Содержание
- 2. Acknowledgment Michael Theobald and Steven Nowick, for providing slides for this lecture.
- 3. An Implicit Method for Hazard-Free Two-Level Logic Minimization Michael Theobald and Steven M. Nowick Columbia University,
- 4. ☹ Hazard-Free Logic Minimization Given: Boolean function and multi-input change
- 5. ☺ Hazard-Free Logic Minimization
- 6. ☺ Hazard-Free Logic Minimization ☹ f(A) ? f(B) 0 ? 0 0 ? 1 1 ?
- 7. ☺ Hazard-Free 2-Level Logic Minimization
- 8. Classic 2-Level Logic Minimization Step 1. Generate Prime Implicants Step 2. Select Minimum # of Primes
- 9. 2-level Logic Minimization: Classic vs. Hazard-Free Classic (Quine-McCluskey): Hazard-Free: Given: Boolean function & set of “multi-input”
- 10. Hazard-Free Logic Minimization Non-monotonic function hazard no implementation hazard-free Monotonic function-hazard-free ☺ ☹ Restriction to monotonic
- 11. Hazard-Freedom Conditions: 1 -> 1 transition ☺ ☹ Required Cube must be covered
- 12. Hazard-Freedom Conditions: 1 -> 0 transition
- 13. Hazard-Freedom Conditions: 1 -> 0 transition
- 14. Hazard-Freedom Conditions: 1 -> 0 transition
- 15. Hazard-Freedom Conditions: 1 -> 0 transition
- 16. Hazard-Freedom Conditions: 1 -> 0 transition
- 17. Hazard-Freedom Conditions: 1 -> 0 transition ☹
- 18. Hazard-Freedom Conditions: 1 -> 0 transition ☹ illegal intersection
- 19. Hazard-Freedom Conditions: 1 -> 0 transition ☺ No illegal intersection of privileged cube ☹ illegal intersection
- 20. Dynamic-Hazard-Free Prime Implicants Prime NO DHF-Prime illegal intersection
- 21. 2-level Logic Minimization: Classic vs. Hazard-Free Classic (Quine-McCluskey): Hazard-Free: Given: Boolean function & set of “multi-input”
- 22. Hazard-Free 2-level Logic Minimization: Previous Work Early work (1950s-1970s): Eichelberger, Unger, Beister, McCluskey Initial solution: Nowick/Dill
- 23. IMPYMIN: an exact 2-level minimizer Two main ideas: novel reformulation of hazard-freedom constraints used for dhf-prime
- 24. Review: Primes vs. DHF-Primes Classic (Quine-McCluskey): Hazard-Free: DHF-Prime Implicants = maximal implicants that do not intersect
- 25. Topic 1: New Idea Challenge: Two types of constraints maximality constraints: “we want maximally large implicants”
- 26. Auxiliary Synchronous Function g 0 0 0 1 1 1 1 0 0 0 1 0
- 27. Prime Implicants of g Expansion in z-dimension guarantees avoidance of priv-cube in original domain f g
- 28. Prime Implicants of g Expansion in x-dimension corresponds to enlarging cube in original domain. f g
- 29. Summary: Auxiliary Synchronous Function g The definition of auxiliary function g exactly ensures : Expansion in
- 30. New approach: DHF-Prime Generation Goal: Efficient new method for DHF-Prime generation Approach: translate original function f
- 31. Prime Generation of g f g Prime implicants of g
- 32. Filtering Primes of g Lifting Prime implicants of g 3 classes of primes of synchronous fct
- 33. Projection Lifting Prime implicants of g f g DHF-Prime(f,T)
- 34. Formal Characterization of DHF-Prime(f,T)
- 35. IMPYMIN CAD tool for Hazard-Free 2-Level Logic Two main ideas: Computes DHF-Primes in higher-dimension space Implicit
- 36. What is a BDD ? Compact representation for Boolean function a b c 0 1 0
- 37. What is implicit logic minimization? Classic Quine-McCluskey: Scherzo [Coudert] (implicit logic minimization): ?
- 38. IMPYMIN Overview: Implicit Hazard-free 2-Level Minimizer f, T Scherzo’s Implicit Solver objects-to-be-covered covering objects
- 39. Impymin vs. HFMIN: Results 39 23 0 9 0 #z added variables
- 41. Скачать презентацию