Логические основы компьютеров

Содержание

Слайд 2

Логика, высказывания

Логика (др.греч. λογικος) – это наука о том, как правильно рассуждать,

Логика, высказывания Логика (др.греч. λογικος) – это наука о том, как правильно
делать выводы, доказывать утверждения.

Формальная логика отвлекается от конкретного содержания, изучает только истинность и ложность высказываний.

Логическое высказывание – это повествовательное предложение, относительно которого можно однозначно сказать, истинно оно или ложно.

Слайд 3

Высказывание или нет?

Сейчас идет дождь.
Жирафы летят на север.
История – интересный предмет.
У квадрата

Высказывание или нет? Сейчас идет дождь. Жирафы летят на север. История –
– 10 сторон и все разные.
Красиво!
В городе N живут 2 миллиона человек.
Который час?

Слайд 4

Логика и компьютер

Двоичное кодирование – все виды информации кодируются с помощью 0

Логика и компьютер Двоичное кодирование – все виды информации кодируются с помощью
и 1.
Задача – разработать оптимальные правила обработки таких данных.
Почему «логика»? Результат выполнения операции можно представить как истинность (1) или ложность (0) некоторого высказывания.
Джордж Буль разработал основы алгебры, в которой используются только 0 и 1 (алгебра логики, булева алгебра).

Слайд 5

Обозначение высказываний

A – Сейчас идет дождь.
B – Форточка открыта.

простые высказывания (элементарные)

Составные высказывания

Обозначение высказываний A – Сейчас идет дождь. B – Форточка открыта. простые
строятся из простых с помощью логических связок (операций) «и», «или», «не», «если … то», «тогда и только тогда» и др.

A и B
A или не B
если A, то B
A тогда и только
тогда, когда B

Сейчас идет дождь и открыта форточка.
Сейчас идет дождь или форточка закрыта.
Если сейчас идет дождь, то форточка открыта.
Дождь идет тогда и только тогда, когда открыта форточка.

Слайд 6

Операция НЕ (инверсия)

Если высказывание A истинно, то «не А» ложно, и наоборот.

1

0

0

1

таблица

Операция НЕ (инверсия) Если высказывание A истинно, то «не А» ложно, и
истинности операции НЕ

также , , not A (Паскаль), ! A (Си)

Таблица истинности логического выражения Х – это таблица, где в левой части записываются все возможные комбинации значений исходных данных, а в правой – значение выражения Х для каждой комбинации.

Слайд 7

Операция И

Высказывание «A и B» истинно тогда и только тогда, когда А

Операция И Высказывание «A и B» истинно тогда и только тогда, когда
и B истинны одновременно.

A и B

A

B

Слайд 8

Операция И (логическое умножение, конъюнкция)

1

0

также: A·B, A ∧ B, A and B (Паскаль),

Операция И (логическое умножение, конъюнкция) 1 0 также: A·B, A ∧ B,
A && B (Си)

0

0

конъюнкция – от лат. conjunctio — соединение

A ∧ B

Слайд 9

Операция ИЛИ (логическое сложение, дизъюнкция)

Высказывание «A или B» истинно тогда, когда истинно

Операция ИЛИ (логическое сложение, дизъюнкция) Высказывание «A или B» истинно тогда, когда
А или B, или оба вместе.

A или B

A

B

Слайд 10

Операция ИЛИ (логическое сложение, дизъюнкция)

1

0

также: A+B, A ∨ B, A or B (Паскаль),

Операция ИЛИ (логическое сложение, дизъюнкция) 1 0 также: A+B, A ∨ B,
A || B (Си)

1

1

дизъюнкция – от лат. disjunctio — разъединение

Слайд 11

Операция «исключающее ИЛИ»

Высказывание «A ⊕ B» истинно тогда, когда истинно А или

Операция «исключающее ИЛИ» Высказывание «A ⊕ B» истинно тогда, когда истинно А
B, но не оба одновременно (то есть A ≠ B).
«Либо пан, либо пропал».

0

0

также: A xor B (Паскаль), A ^ B (Си)

1

1

Слайд 12

Импликация («если …, то …»)

Высказывание «A → B» истинно, если не исключено,

Импликация («если …, то …») Высказывание «A → B» истинно, если не
что из А следует B.
A – «Правильно записано условие задачи».
B – «Задача решена верно».

1

1

1

0

Слайд 13

Импликация («если …, то …»)

«Если Вася идет гулять, то Маша сидит дома».

Импликация («если …, то …») «Если Вася идет гулять, то Маша сидит
A – «Вася идет гулять».
B – «Маша сидит дома».
Маша может пойти гулять (B=0), а может и не пойти (B=1)!

Слайд 14

Эквивалентность («тогда и только тогда, …»)

Высказывание «A ↔ B» истинно тогда и

Эквивалентность («тогда и только тогда, …») Высказывание «A ↔ B» истинно тогда
только тогда, когда А и B равны.

Слайд 15

Базовый набор операций

С помощью операций И, ИЛИ и НЕ можно реализовать любую

Базовый набор операций С помощью операций И, ИЛИ и НЕ можно реализовать любую логическую операцию.
логическую операцию.

Слайд 16

Вычисление логических выражений

Порядок вычислений:
скобки
НЕ
И
ИЛИ, исключающее ИЛИ
импликация
эквивалентность

1 4 2 5 3

Вычисление логических выражений Порядок вычислений: скобки НЕ И ИЛИ, исключающее ИЛИ импликация

Слайд 17

Задание 1 Составление таблиц истинности

Задание 1 Составление таблиц истинности

Слайд 18

Задание 2. Какие из приведенных слов удовлетворяют логическому условию:

(первая буква согласная→вторая буква

Задание 2. Какие из приведенных слов удовлетворяют логическому условию: (первая буква согласная→вторая
согласная) & (последняя буква гласная → предпоследняя буква гласная)?
1) Тренаж
2) Мафия
3) Озон
4) Игра

Слайд 19

Задание 3 Построить таблицу истинности

a ∧ ¬b ∨ (a ∨ b)

Задание 3 Построить таблицу истинности a ∧ ¬b ∨ (a ∨ b) ∧ c
∧ c
Имя файла: Логические-основы-компьютеров.pptx
Количество просмотров: 32
Количество скачиваний: 0