Построение сечений

Содержание

Слайд 2

Определение

Секущая плоскость – любая плоскость по обе стороны которой имеются точки

Определение Секущая плоскость – любая плоскость по обе стороны которой имеются точки

Слайд 3

Цель.

Наша задача – решить задачи на построение сечений и показать решение на

Цель. Наша задача – решить задачи на построение сечений и показать решение на макете.
макете.

Слайд 4

Задача 1.

Дан тетраэдр АВСD. Точка M  принадлежит ребру тетраэдра АВ, точка N  принадлежит ребру тетраэдра  ВD  и

Задача 1. Дан тетраэдр АВСD. Точка M принадлежит ребру тетраэдра АВ, точка
точка  Р принадлежит ребру DС. Постройте сечение тетраэдра плоскостью  MNP.

Слайд 5

Решение задачи 1.

Рассмотрим грань тетраэдра DВС. В этой грани точки N и P принадлежат грани DВС, а значит,

Решение задачи 1. Рассмотрим грань тетраэдра DВС. В этой грани точки N
и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP – это линия пересечения двух плоскостей: плоскости грани DВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости DВС. Найдем точку пересечения прямых NP и ВС. Обозначим ее Е.

Точка Е принадлежит плоскости сечения MNP, так как она лежит на прямой NР, а прямая NР целиком лежит в плоскости сечения MNP.
Также точка Е лежит в плоскости АВС, потому что она лежит на прямой ВС из плоскости АВС.
Получаем, что ЕМ – линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е, и продолжим прямую ЕМ до пересечения с прямой АС. Точку пересечения прямых ЕМ и АС обозначим Q.
Итак, в этом случае NPQМ - искомое сечение.

Слайд 6

Задача 2.

Точка М  лежит на боковой грани АDВ  тетраэдра АВСD. Постройте сечение тетраэдра плоскостью, которое

Задача 2. Точка М лежит на боковой грани АDВ тетраэдра АВСD. Постройте
проходит через точку М  параллельно основанию АВС.

Слайд 7

Решение задачи 2.

Для решения построим вспомогательную плоскость DМN. Пусть прямая DМ пересекает прямую АВ в

Решение задачи 2. Для решения построим вспомогательную плоскость DМN. Пусть прямая DМ
точке К (Рис. 7.). Тогда, СКD – это сечение плоскости DМN и тетраэдра. В плоскости DМN лежит и прямая NM, и полученная прямая СК. Значит, если NM не параллельна СК, то они пересекутся в некоторой точке Р. Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС.

Слайд 8

Задача 3.

Дан тетраэдр АВСD.  М – внутренняя точка грани АВD.  Р – внутренняя точка грани АВС.  N –

Задача 3. Дан тетраэдр АВСD. М – внутренняя точка грани АВD. Р
внутренняя точка ребра DС. Построить сечение тетраэдра плоскостью, проходящей через точки М, N и Р. 

Слайд 9

Решение задачи 3.

Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС. В прошлой задаче

Решение задачи 3. Рассмотрим первый случай, когда прямая MN не параллельна плоскости
мы нашли точку пересечения прямой MN и плоскости АВС. Это точка К, она получена с помощью вспомогательной плоскости DМN, т.е. мы проводим DМ и получаем точку F. Проводим СF и на пересечении MN получаем точку К.

Слайд 10

Проведем прямую КР. Прямая КР лежит и в плоскости сечения, и в плоскости АВС. Получаем точки Р1 и Р2.

Проведем прямую КР. Прямая КР лежит и в плоскости сечения, и в
Соединяем Р1 и М и на продолжении получаем точку М1. Соединяем точку Р2 и N. В результате получаем искомое сечение Р1Р2NМ1. Задача в первом случае решена. Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС. Плоскость МNР проходит через прямую МNпараллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р1Р2, тогда прямая Р1Р2 параллельна данной прямой MN. Теперь проведем прямую Р1М и получим точку М1. Р1Р2NМ1 – искомое сечение.

Слайд 11

Задача 4.

Дана шестиугольная призма ABCDEFA1B1C1D1E1F1 Точка M лежит на AA1. Построить сечение

Задача 4. Дана шестиугольная призма ABCDEFA1B1C1D1E1F1 Точка M лежит на AA1. Построить
параллельное основанию и проходящее через точку M .

Слайд 12

Решение задачи 4.

Проведём MH//AB (H принадлежит BB1).
Проведём HP//BC (P принадлежит CC1).

Решение задачи 4. Проведём MH//AB (H принадлежит BB1). Проведём HP//BC (P принадлежит

Проведём PL//CD (L принадлежит DD1).
Проведём LN//DE (N принадлежит EE1).
Проведём NK//EF (K принадлежит FF1).
Проведём KM//FA (M принадлежит AA1).

Слайд 13

Решение задачи 4.

Решение задачи 4.
Имя файла: Построение-сечений.pptx
Количество просмотров: 37
Количество скачиваний: 0