Физические основы нейронных сетей и сенсорных систем

Содержание

Слайд 2

План занятия

Сенсорные системы и сети:
определение;
примеры применения.
Искусственные нейронные сети:
определение;
примеры применения.

План занятия Сенсорные системы и сети: определение; примеры применения. Искусственные нейронные сети: определение; примеры применения.

Слайд 3

Зачем это вообще?

Цель курса — познакомить вас с двумя группами актуальных и

Зачем это вообще? Цель курса — познакомить вас с двумя группами актуальных
востребованных технологий:
В любом современном высокотехнологичном продукте или сервисе используются либо сенсорные системы и сети, либо искусственные нейронные сети, либо и то, и другое.

Слайд 4

Зачем это вообще?

Карл Маркс и Фридрих Энгельс — это не муж и

Зачем это вообще? Карл Маркс и Фридрих Энгельс — это не муж
жена, а четыре совершенно разных человека.
Сенсорные системы и искусственные нейронные сети — это разные группы технологий, поэтому и курс будет делиться на две равные и мало связанные друг с другом части:
1. Сенсорные системы и сети.
2. Искусственные нейронные сети.

Слайд 5

План занятия

Сенсорные системы и сети:
определение;
примеры применения.
Искусственные нейронные сети:
определение;
примеры применения.

План занятия Сенсорные системы и сети: определение; примеры применения. Искусственные нейронные сети: определение; примеры применения.

Слайд 6

Сенсоры

Преобразователь физической величины — устройство, предназначенное для восприятия и преобразования контролируемой физической

Сенсоры Преобразователь физической величины — устройство, предназначенное для восприятия и преобразования контролируемой
величины в выходной сигнал (ГОСТ Р 51086-97).
Первичный измерительный преобразователь (sensor) — устройство, используемое при измерении,
которое обеспечивает на выходе величину, находящуюся в определенном соотношении с входной величиной,
и на которое непосредственно воздействует явление, физический объект или вещество, являющееся носителем величины, подлежащей измерению (ГОСТ Р 8.673-2009).

Слайд 7

Сенсоры

Датчик — средство измерений, предназначенное для выработки сигнала измерительной информации в форме,

Сенсоры Датчик — средство измерений, предназначенное для выработки сигнала измерительной информации в
удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем (ГОСТ Р 51086-97).
Датчик — конструктивно обособленное устройство, содержащее один или несколько первичных измерительных преобразователей (ГОСТ Р 8.673-2009).
Слово «сенсор» в настоящий момент в русском языке используется как синоним слова «датчик».

Слайд 8

Сенсоры

Окружающий мир Вычислительные системы

Датчик

Сенсоры Окружающий мир Вычислительные системы Датчик

Слайд 9

Сенсоры

Виды датчиков (классификация неполная):
температуры;
давления;
влажности;
радиоактивности;
вибрации;
ускорения (акселерометр);
положения (на основе гироскопа);
и другие.

Сенсоры Виды датчиков (классификация неполная): температуры; давления; влажности; радиоактивности; вибрации; ускорения (акселерометр);

Слайд 10

Сенсорные системы и сети

А что если взять и объединить множество датчиков?
В современном

Сенсорные системы и сети А что если взять и объединить множество датчиков?
мире чаще используются не единичные датчики, а их совокупности:
Несколько различных датчиков, объединенных в систему.
Географически распределенная система из большого количества датчиков 1-2 типов.

Слайд 11

Сенсорные системы и сети

Несколько различных датчиков, объединенных в систему — смартфон.

Сенсорные системы и сети Несколько различных датчиков, объединенных в систему — смартфон.

Слайд 12

Сенсорные системы и сети

Несколько различных датчиков, объединенных в систему — смартфон.
«датчик прикосновения»

Сенсорные системы и сети Несколько различных датчиков, объединенных в систему — смартфон.
— сенсорный экран;
микрофон;
«датчик» GPS;
сканер отпечатка пальца;
датчик освещенности;
датчик приближения;
акселерометр и/или гироскоп;
магнитометр (компас);
камера (слежение за взглядом).

Слайд 13

Сенсорные системы и сети

Географически распределенная система из большого количества датчиков — беспроводные

Сенсорные системы и сети Географически распределенная система из большого количества датчиков —
(всепроникающие) сенсорные сети.
«умный дом»;
системы контроля промышленных объектов;
контроль автотрафика;
контроль проникновения на территорию;
контроль экологических параметров;
ресурсосбережение.

Слайд 14

Сенсорные системы и сети

ITU-T Y.2221:
Сенсорный узел — устройство, состоящее из датчика (и

Сенсорные системы и сети ITU-T Y.2221: Сенсорный узел — устройство, состоящее из
опционально — актора) и оборудования для обработки и передачи информации:

Слайд 15

Сенсорные системы и сети

Сенсорные системы и сети

Слайд 16

Сенсорные системы и сети

ITU-T Y.2221:
Сенсорная сеть — сеть, включающая в себя связанные

Сенсорные системы и сети ITU-T Y.2221: Сенсорная сеть — сеть, включающая в
друг с другом по проводным или беспроводным каналам сенсорные узлы, осуществляющие пересылку данных друг другу.
Беспроводная сенсорная сеть
Всепроникающая сенсорная сеть (Ubiquitous sensor network, USN) — концептуальная интеллектуальная сеть, построенная поверх существующих сетей связи и предоставляющая данные от множества сенсоров в любое время, в любом месте и любому потребителю.

Слайд 17

Сенсорные системы и сети

Сенсорные системы и сети

Слайд 18

Сенсорные системы и сети

Сенсорные системы и сети

Слайд 19

План занятия

Сенсорные системы и сети:
определение;
примеры применения.
Искусственные нейронные сети:
определение;
примеры применения.

План занятия Сенсорные системы и сети: определение; примеры применения. Искусственные нейронные сети: определение; примеры применения.

Слайд 20

Сенсорные системы и сети

Мониторинг параметров окружающей среды (температура, вибрации, содержание вредных веществ

Сенсорные системы и сети Мониторинг параметров окружающей среды (температура, вибрации, содержание вредных
в атмосфере) на различных индустриальных объектах.

Слайд 21

Сенсорные системы и сети

Мониторинг температуры, освещенности, силы и направления ветра, влажности воздуха

Сенсорные системы и сети Мониторинг температуры, освещенности, силы и направления ветра, влажности
и почвы в сельском хозяйстве.

Слайд 22

Сенсорные системы и сети

Мониторинг состояния здоровья человека (в больнице, дома, на поле

Сенсорные системы и сети Мониторинг состояния здоровья человека (в больнице, дома, на поле боя).
боя).

Слайд 23

Сенсорные системы и сети

«Умный дом» — следующий шаг в развитии USN, сочетание

Сенсорные системы и сети «Умный дом» — следующий шаг в развитии USN,
в одной системе сенсоров и акторов

Слайд 24

О чем будут лекции?

Примерные темы последующих лекций, практических и лабораторных работ:
(?) История

О чем будут лекции? Примерные темы последующих лекций, практических и лабораторных работ:
развития сенсорных систем.
Физические принципы, лежащие в основе различных датчиков. Критерии выбора датчиков для решения практических задач.
Принципы работы протоколов беспроводной передачи данных для сенсорных сетей (физический и канальный уровень). Критерии выбора протоколов для решения практических задач.
(?) Обзор существующих технологий и платформ для создания сенсорных систем.
Интернет вещей — обзор приложений.

Слайд 25

План занятия

Сенсорные системы и сети:
определение;
примеры применения.
Искусственные нейронные сети:
определение;
примеры применения.

План занятия Сенсорные системы и сети: определение; примеры применения. Искусственные нейронные сети: определение; примеры применения.

Слайд 26

Искусственные нейронные сети

Искусственные нейронные сети — математические модели, а также их программные

Искусственные нейронные сети Искусственные нейронные сети — математические модели, а также их
или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей.
Биологическая нейронная сеть — совокупность нейронов, которые связаны или функционально объединены в нервной системе, выполняют специфические физиологические функции.

Слайд 27

Биологические нейронные сети

Нервная система человека построена из нейронов — клеток, способных (помимо

Биологические нейронные сети Нервная система человека построена из нейронов — клеток, способных
прочего) принимать, обрабатывать и передавать электрохимические импульсы

Слайд 28

Биологические нейронные сети

Объединенные аксонами нейроны образуют в мозге человека сложную сеть.
Каждая связь

Биологические нейронные сети Объединенные аксонами нейроны образуют в мозге человека сложную сеть.
между нейронами имеет свой вес — силу синаптической связи.
Синапсы имеют «знак» — они могут быть возбуждающими или тормозящими.
Каждый нейрон имеет «проговое значение» срабатывания — величину электрохимического воздействия на него, после которого он также передаст электрохимический импульс.

Слайд 29

А как бы нам это использовать?

Человеческий мозг справлялся лучше компьютеров с большим

А как бы нам это использовать? Человеческий мозг справлялся лучше компьютеров с
числом задач. Но:
Ограниченные вычислительные возможности человеческого мозга.
Ограниченное число людей.
Когнитивные искажения.
Искусственные нейронные сети — попытка избавиться от этих недостатков при решении ряда задач.

Слайд 30

А как бы нам это использовать?

Применение искусственных нейронных сетей:
Распознавание графических образов, речи.
Классификация

А как бы нам это использовать? Применение искусственных нейронных сетей: Распознавание графических
графических образов и др.
Принятие решений и прогнозирование.

Слайд 31

Искусственные нейронные сети

На основе данных принципов строятся искусственные нейронные сети:

Искусственные нейронные сети На основе данных принципов строятся искусственные нейронные сети:

Слайд 32

Искусственные нейронные сети

Характеристики ИНС:
Несколько слоев сети (внешние и скрытые).
Коэффициенты каждой связи.
В каждом

Искусственные нейронные сети Характеристики ИНС: Несколько слоев сети (внешние и скрытые). Коэффициенты
узле — пороговая функция:

Слайд 33

Искусственные нейронные сети

Как найти коэффициенты связей и параметры пороговой функции?
Биологические нейронные сети:

Искусственные нейронные сети Как найти коэффициенты связей и параметры пороговой функции? Биологические нейронные сети:

Слайд 34

Искусственные нейронные сети

Как найти коэффициенты связей и параметры пороговой функции?
Биологические нейронные сети:
Обучение.
Искусственные

Искусственные нейронные сети Как найти коэффициенты связей и параметры пороговой функции? Биологические
нейронные сети:

Слайд 35

Искусственные нейронные сети

Как найти коэффициенты связей и параметры пороговой функции?
Биологические нейронные сети:
Обучение.
Искусственные

Искусственные нейронные сети Как найти коэффициенты связей и параметры пороговой функции? Биологические
нейронные сети:
Тоже обучение!

Слайд 36

Искусственные нейронные сети

Обучение нейронной сети:
Начальные параметры выбираются на основе экспертного мнения или

Искусственные нейронные сети Обучение нейронной сети: Начальные параметры выбираются на основе экспертного
случайно.
Существует набор данных для обучения (исходные данные, «правильный» ответ на вопрос для которых известен).
Обучающий набор данных пропускается через ИНС, вычисляется разница между известными ответами и значениями на выходе ИНС (обычно сумма квадратов).
Коэффициенты ИНС изменяются, пока не будут найдены такие коэффициенты, при которых ошибка минимальна (идеально — равна нулю, на практике — стабильна при изменении набора обучающих данных).

Слайд 37

Искусственные нейронные сети

Метод обратного распространения ошибки — один из методов подбора весов:

Искусственные нейронные сети Метод обратного распространения ошибки — один из методов подбора весов:

Слайд 38

План занятия

Сенсорные системы и сети:
определение;
примеры применения.
Искусственные нейронные сети:
определение;
примеры применения.

План занятия Сенсорные системы и сети: определение; примеры применения. Искусственные нейронные сети: определение; примеры применения.

Слайд 39

Применение ИНС

Deep Dream от Google:

Применение ИНС Deep Dream от Google:

Слайд 40

Применение ИНС

Deep Dream от Google:

Применение ИНС Deep Dream от Google:

Слайд 41

Применение ИНС

Применение ИНС

Слайд 42

Серьезные применения ИНС

Применение искусственных нейронных сетей:
Распознавание графических образов, речи.
Классификация графических образов и

Серьезные применения ИНС Применение искусственных нейронных сетей: Распознавание графических образов, речи. Классификация
др.
Принятие решений и прогнозирование.
Имя файла: Физические-основы-нейронных-сетей-и-сенсорных-систем.pptx
Количество просмотров: 38
Количество скачиваний: 0