Формы мышления. Алгебра высказываний

Содержание

Слайд 2

Цель:
Рассмотреть основные понятия логики предикатов.

Цель: Рассмотреть основные понятия логики предикатов.

Слайд 3

Логика – это наука о формах и способах мышления.

Логика изучает внутреннюю

Логика – это наука о формах и способах мышления. Логика изучает внутреннюю
структуру процесса мышления, который реализуется в таких естественно сложившихся формах как понятие, суждение, умозаключение и доказательство.

Слайд 4

Понятие.
Понятие – это форма мышления, отражающая наиболее существенные свойства предмета, отличающие

Понятие. Понятие – это форма мышления, отражающая наиболее существенные свойства предмета, отличающие
его от других предметов.
В структуре каждого понятия нужно различать две стороны: содержание и объем.
Содержание понятия составляет совокупность существенных признаков предмета.
Объем понятия определяется совокупностью предметов, на которую оно распространяется, и может быть представлено в форме множества объектов, состоящего из элементов множеств.

Слайд 5

Алгебра множеств, одна из основополагающих современных математических теорий.
Между множествами может

Алгебра множеств, одна из основополагающих современных математических теорий. Между множествами может могут
могут быть различные виды отношений:
равнозначность, когда объемы понятий полностью совпадают
пересечение, когда объемы понятий частично совпадают
подчинение, когда объем одного понятия полностью входит в объем другого.

Слайд 6

Для наглядной иллюстрации объемов понятий используются диаграммы Эйлера-Венна. Если имеются какие-либо

Для наглядной иллюстрации объемов понятий используются диаграммы Эйлера-Венна. Если имеются какие-либо понятия
понятия А, В, С, то объем каждого понятия (множество) можно представить в виде круга, а отношения между ними в виде пересекающихся кругов.
Пример 1: Отобразить с помощью диаграммы Эйлера-Венна соотношение между объемами понятий натуральные числа и четные числа.
Натуральные числа – это множество целых положительных чисел А, а четные – это множество отрицательных и положительных чисел B. Там, где они пересекаются получается множество натуральных четных чисел С:

Слайд 7

А

не А

Пример 2: Отобразить с помощью диаграммы Эйлера-Венна множество натуральных чисел А

А не А Пример 2: Отобразить с помощью диаграммы Эйлера-Венна множество натуральных
и множество не А:

Слайд 8

Высказывание – это предложение в отношении которого можно однозначно сказать истинно

Высказывание – это предложение в отношении которого можно однозначно сказать истинно оно
оно или ложно. Высказывания бывают общими, частными или единичными.

Слайд 9

Общее высказывание начинается со слов: все, всякий, каждый, ни один.

Все

Общее высказывание начинается со слов: все, всякий, каждый, ни один. Все кошки
кошки умеют летать
Всякий ребенок ходит в школу
Ни один ребенок не старше своей мамы
Каждая рыба умеет плавать

Слайд 10

Частное высказывание начинается со слов: некоторые, большинство и т.п.

Некоторые птицы

Частное высказывание начинается со слов: некоторые, большинство и т.п. Некоторые птицы умеют
умеют разговаривать
Большинство людей любят мороженное

Слайд 11

Во всех других случаях высказывание является единичным.

Во всех других случаях высказывание является единичным.

Слайд 12

Высказывание может быть простым или составным.
Простое высказывание, если никакая

Высказывание может быть простым или составным. Простое высказывание, если никакая его часть
его часть сама не является высказыванием.
Составное – это высказывание, состоящее из простых высказываний.

Слайд 13

Высказывания имеют определенную логическую форму.
Понятие о предмете мысли называется субъектом

Высказывания имеют определенную логическую форму. Понятие о предмете мысли называется субъектом и
и обозначается буквой S, а понятие о свойствах и отношениях предмета называется предикатом и обозначается буквой Р.

Слайд 14

Оба эти понятия – субъект и предикат называются терминами суждения.
Отношения

Оба эти понятия – субъект и предикат называются терминами суждения. Отношения между
между субъектом и предикатом выражаются связкой «есть», «не есть», «является», «состоит» и т.д.
Таким образом, каждое высказывание состоит из трех элементов – субъекта, предиката и связки.
Состав суждения можно выразить общей формулой «S есть Р» или «S не есть Р».

Слайд 15

Пример: Иванов является учеником 10 б. Здесь Иванов – субъект, является –

Пример: Иванов является учеником 10 б. Здесь Иванов – субъект, является –
связка, учеником – предикат.

Иванов является учеником 10 б.

субъект

связка

предикат

Слайд 16

Умозаключение.
Умозаключение – это форма мышления, с помощью которой из одного

Умозаключение. Умозаключение – это форма мышления, с помощью которой из одного или
или нескольких суждений (посылок) может быть получено новое суждение (вывод).
Умозаключения бывают дедуктивные, индуктивные и по аналогии.

Слайд 17

В дедуктивных умозаключениях рассуждения ведутся от общего к частному.
Например,

В дедуктивных умозаключениях рассуждения ведутся от общего к частному. Например, из двух
из двух высказываний: «Ртуть является металлом» и «Все металлы электропроводны» можно сделать вывод «Ртуть электропроводна».

Слайд 18

В индуктивных умозаключениях рассуждения ведутся от частного к общему.
Например,

В индуктивных умозаключениях рассуждения ведутся от частного к общему. Например, установив, что
установив, что отдельные металлы – железо, медь, цинк и так далее – обладают свойством электропроводности можно сделать вывод, что все металлы электропроводны.

Слайд 19

Умозаключение по аналогии представляет собой движение мысли от общности одних свойств

Умозаключение по аналогии представляет собой движение мысли от общности одних свойств и
и отношений у сравниваемых предметов или процессов.
Например, химический состав Солнца и Земли сходен по многим показателям, поэтому, когда на Солнце нашли еще неизвестный элемент гелий, предположили, что данный элемент есть и на Земле.

Слайд 20

Доказательство.
Доказательство – есть мыслительный процесс, направленный на подтверждение или опровержение какого

Доказательство. Доказательство – есть мыслительный процесс, направленный на подтверждение или опровержение какого
либо положения посредством других несомненных, ранее обоснованных доводов.

Слайд 21

Спасибо
за внимание!

Спасибо за внимание!

Слайд 22

Автор презентации:

Ширяева Ольга Мухадинновна,
Муниципальное Общеобразовательное Учреждение
«Средняя общеобразовательная школа №2»,
учитель информатики,
1 квалификационной категории.
http://www.shiryaeva.86sch2-nyagan.edusite.ru

Автор презентации: Ширяева Ольга Мухадинновна, Муниципальное Общеобразовательное Учреждение «Средняя общеобразовательная школа №2»,
Имя файла: Формы-мышления.-Алгебра-высказываний.pptx
Количество просмотров: 280
Количество скачиваний: 0