Геометрия 11 класс

Содержание

Слайд 2

Если в одной из 2 параллельных плоскостей взять окружность, и из каждой

Если в одной из 2 параллельных плоскостей взять окружность, и из каждой
ее точки восстановить перпендикуляр до пересечения со второй плоскостью, то получится тело, ограниченное двумя кругами и поверхностью, образованной из перпендикуляров, это тело называется цилиндром.

1.Как можно получить цилиндр

Круги, лежащие в параллельных плоскостях, называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей оснований –называются образующими цилиндра.

Слайд 3

А можно так получить цилиндр

Вращением прямоугольника вокруг одной из его сторон

А можно так получить цилиндр Вращением прямоугольника вокруг одной из его сторон

Слайд 4

2.Понятие цилиндрической поверхности

1

2

3

4

1. Основание цилиндра

2. Образующие

3.Ось цилиндра

4. Радиус основания

4

Радиусом цилиндра называется радиус

2.Понятие цилиндрической поверхности 1 2 3 4 1. Основание цилиндра 2. Образующие
его основания.

Слайд 5

Образующая цилиндра при вращении вокруг своей оси образует боковую (цилиндрическую) поверхность цилиндра.

1

2

3

4

4

2.

Образующая цилиндра при вращении вокруг своей оси образует боковую (цилиндрическую) поверхность цилиндра.
Образующие

Поверхность, состоящая из образующих, называется боковой поверхностью цилиндра.

Слайд 6

Если сечение проходит через ось цилиндра, то оно имеет форму прямоугольника и

Если сечение проходит через ось цилиндра, то оно имеет форму прямоугольника и
называется «осевым»

Сечение плоскостью, перпендикулярной к оси или параллельное основаниям, является кругом.

β

α

β

о

о1

γ

3.Сечения цилиндра

Сечение , параллельное оси цилиндра-прямоугольник

Слайд 7

5.Касательная плоскость цилиндра

Касательной плоскостью к цилиндру называется плоскость проходящая через образующую цилиндра

5.Касательная плоскость цилиндра Касательной плоскостью к цилиндру называется плоскость проходящая через образующую
и перпендикулярная плоскости осевого сечения, содержащей эту образующую

Слайд 8

Разверткой боковой поверхности цилиндра является прямоугольник со сторонами Н и С, где

Разверткой боковой поверхности цилиндра является прямоугольник со сторонами Н и С, где
Н – высота цилиндра, а С – длина окружности основания.

н

С=2πR

S=πR²

S=πR²

Слайд 9

6.Плошадь поверхности цилиндра

S(полн.поверхн.)=2πR(R+h)

S(бок.поверхн.)= 2πRh

Sосн=πR²

н

С=2πR

S=πR²

S=πR²

S(полн.поверхн.)=2πR²+2πRh

6.Плошадь поверхности цилиндра S(полн.поверхн.)=2πR(R+h) S(бок.поверхн.)= 2πRh Sосн=πR² н С=2πR S=πR² S=πR² S(полн.поверхн.)=2πR²+2πRh

Слайд 10

Конус

Пусть прямоугольный треугольник вращается вокруг одного из катетов, тогда второй катет

Конус Пусть прямоугольный треугольник вращается вокруг одного из катетов, тогда второй катет
описывает окружность.
Полученная при вращении фигура называется конусом.

3. Гипотенуза данного треугольника-образующая конуса

4.Катет, вокруг которого вращается треугольник – ось конуса,
Второй катет- радиус описываемой окружности основания

Слайд 11

Конус и его развертка

L

H

R

L-образующая H-высота
R-радиус основания

L

R

Sбок=πRL

S=πR²

Нахождение Sбок

Sполн=πRL+πR²=
=πR(R+L)

Конус и его развертка L H R L-образующая H-высота R-радиус основания L

Слайд 12

Осевое сечение конуса-равнобедренный треугольник

Сечение конуса, перпендикулярное оси конуса имеет форму круга

Осевое сечение конуса-равнобедренный треугольник Сечение конуса, перпендикулярное оси конуса имеет форму круга

Слайд 13

S

Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей

S Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей
плоскостью,параллельной основанию.
Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса.
Осевое сечение ус. конуса-
-равнобедренная трапеция

Слайд 14

Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями.

Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой
Высотой усеченного конуса называется расстояние между основаниями.


h

R

r

Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.

Слайд 15

Сферой
называется поверхность, состоящая из всех точек пространства, расположенных на

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии
данном расстоянии от данной точки.

Сфера и шар

Слайд 16

о

о

м

м

с

О(0;0;0)

M(x;y;z)

Уравнение сферы

о о м м с О(0;0;0) M(x;y;z) Уравнение сферы

Слайд 17

d>R

d=R

d

α

α

α

ПЛОСКОСТЬ КАСАЕТСЯ ШАРА

ПЛОСКОСТЬ НЕ ИМЕЕТ С ШАРОМ НИ ОДНОЙ ОБЩЕЙ ТОЧКИ

ПЛОСКОСТЬ ПЕРЕСЕКАЕТ

d>R d=R d α α α ПЛОСКОСТЬ КАСАЕТСЯ ШАРА ПЛОСКОСТЬ НЕ ИМЕЕТ
ШАР

о

о

о

С(0;0;d)

С(0;0;d)

С(0;0;d)

R

d

Взаимное расположение сферы и плоскости

Слайд 18

О

А

α

Плоскость , имеющая со сферой одну общую точку, называется касательной к сфере

Радиус

О А α Плоскость , имеющая со сферой одну общую точку, называется
сферы, проведенный к точке касания сферы и плоскости перпендикулярен к касательной плоскости.
ОА┴α

А′

ОА=R, если ОА┴α, то любая другая ОА′- наклонная, а любая наклонная больше , чем ОА, т.е. условие не выполняется( ОА′>R)

Обратная теорема : Если ОА┴α, α-касательная плоскость

Т.к. перпендикуляр и плоскость имеют одну общую точку, то α- касательная плоскость

Слайд 19

Шаровой слой

Шаровым слоем называется часть шара, заключенная между двумя параллельными секущими плоскостями.

Шаровой слой Шаровым слоем называется часть шара, заключенная между двумя параллельными секущими плоскостями.

Слайд 20

Шаровой сегмент

Шаровым сегментом называется часть шара, отсекаемая от него какой - нибудь

Шаровой сегмент Шаровым сегментом называется часть шара, отсекаемая от него какой - нибудь плоскостью.
плоскостью.
Имя файла: Геометрия-11-класс.pptx
Количество просмотров: 173
Количество скачиваний: 0