Содержание
- 2. Квадратное уравнение Квадратным уравнением называется уравнение вида ах2 + bx + c = 0, где а,
 - 3. Коэффициенты квадратного уравнения Числа а, b и с называют коэффициентами квадратного уравнения. ах2 + bx +
 - 4. Неполное квадратное уравнение Квадратное уравнение, в котором хотя бы один из коэффициентов b или с равен
 - 5. Виды неполных квадратных уравнений и их корни ах2 + c = 0, где с ≠ 0.
 - 6. Виды неполных квадратных уравнений и их корни 2. ах2 + bx = 0, где b ≠
 - 7. Виды неполных квадратных уравнений и их корни 3. ах2 = 0 Имеем единственный корень х =
 - 8. Метод выделения полного квадрата Решить уравнение х2 + 14x + 24 = 0. Решение. х2 +
 - 9. Формула корней квадратного уравнения Корни квадратного уравнения ах2 + bx + c = 0 можно найти
 - 10. Формула корней квадратного уравнения Возможны 3 случая: 1. D > 0. Тогда уравнение имеет 2 различных
 - 11. Формула корней квадратного уравнения 2. D = 0. Тогда уравнение имеет единственный корень: х2 - 4x
 - 12. Формула корней квадратного уравнения 3. D Тогда уравнение не имеет корней, т. к. не существует .
 - 13. Корни квадратного уравнения с четным вторым коэффициентом Если b = 2k, то корни уравнения ах2 +
 - 14. Корни квадратного уравнения с четным вторым коэффициентом Решить уравнение 1. х2 + 18x + 32 =
 - 15. Корни квадратного уравнения с четным вторым коэффициентом Решить уравнения 2. 3х2 + 2x + 1 =
 - 16. Приведенное квадратное уравнение Приведенное квадратное уравнение – это уравнение вида х2 + px + q =
 - 17. Формула корней приведенного квадратного уравнения х2 + px + q = 0. х2 - x -
 - 18. Теорема Виета Теорема. Если х1 и х2 – корни приведенного квадратного уравнения х2 + px +
 - 19. Теорема Виета для квадратного уравнения общего вида Теорема. Если х1 и х2 – корни квадратного уравнения
 - 20. Теорема, обратная теореме Виета Теорема. Если числа х1, х2, р и q связаны условиями х1 +
 - 21. Квадратный трехчлен Квадратным трехчленом называется многочлен вида а х2 + bx + c, где а, b,
 - 22. Разложение квадратного трехчлена на линейные множители Теорема. Если х1 и х2 – корни квадратного трехчлена а
 - 23. Неприводимый многочлен Если квадратный трехчлен ах2 + bx + c не имеет корней, то соответствующий многочлен
 - 24. Уравнения, содержащие неизвестное в знаменателе Схема решения: Найти общий знаменатель дробей, входящих в уравнение. Умножить обе
 - 25. Уравнения, содержащие неизвестное в знаменателе Общий знаменатель: (t + 1)(t - 2). Умножим на него обе
 - 26. Уравнения, содержащие неизвестное в знаменателе Общий знаменатель: х(х – 3)(х + 3) . Тогда: 2х –
 - 27. Биквадратные уравнения Уравнение вида ах4 + bx2 + c = 0, где а ≠ 0, b
 - 28. Решение уравнений методом замены неизвестного Нет корней Ответ: 43.
 - 29. Модуль Модуль числа х – это расстояние от начала отсчета до точки х на координатной прямой.
 - 30. Уравнения, содержащие неизвестное под знаком модуля | х2 - 2х - 39| = 24. х2 -
 - 31. Уравнения, содержащие неизвестное под знаком модуля 9х2 - = 0. x > 0, x 9х2 -
 - 33. Скачать презентацию
 






























 Бухгалтерия предприятия КОРП
 Ники Минаж
 Луиджи Ванвителли. Замок в Казерте – композиция, связь с пространством парка
 Kharakteristika_elementa-1
 Человек перед лицом тайны – тайны судьбы и тайны природы
 Алкоголизм и его влияние на развитие здоровой личности
 Клещи
 13-ое Российское совещание «Безопасность исследовательских ядерных установок»
 Контактная сеть
 Элективные курсы
 Педагогические возможности клуба интеллектуального развития «Эврика» по организации внеурочной деятельности
 О вы, служительницы Музы!
 Математические основы компьютерной графики
 Александр Македонский
 Моделирование и формализация
 Методическая система педагогической деятельности учителя биологии МОУ СОШ №3 г. Тутаева Ярославской области Черепановой Татья
 Презентация на тему Глобальная экологическая проблема (11 класс)
 Стройкузбасс. Почему не получается с первого раза
 Тематический классный час. Причёски в школу
 Экстремизм – угроза обществу
 Понятие права социального обеспечения, его источники
 Завтрак чемпиона от Широковой Полины. Омлет с сыром, молоко
 Гимнастика
 Шляпочные грибы 5 класс
 Презентация на тему Социальный портрет молодежи 8/24/16 
 Кордицепс Шенюань
 Презентация на тему Киевское княжество 
 Организация и нормативно-правовое обеспечение государственной (итоговой) аттестации выпускников 9-х классов