Long run Economic

Содержание

Слайд 2

How long-run growth can be measured by the increase in real GDP

How long-run growth can be measured by the increase in real GDP
per capita, how this measure has changed over time, and how it varies across countries
Why productivity is the key to long-run growth, and how productivity is driven by physical capital, human capital, and technological progress
The factors that explain why growth rates differ so much among countries

Слайд 3

How growth has varied among several important regions of the world and

How growth has varied among several important regions of the world and
why the convergence hypothesis applies to economically advanced countries
The question of sustainability and the challenges to growth posed by scarcity of natural resources and environmental degradation

Слайд 4

Comparing Economies Across Time and Space

Real GDP per capita (log scale)

$100,000
10,000
1,000

1907

Comparing Economies Across Time and Space Real GDP per capita (log scale)
1920 1930 1940 1950 1960 1970 1980 1990 2000 2007

Year

Слайд 5

Real GDP per Capita

Real GDP per Capita

Слайд 6

Income Around the World, 2007

Income Around the World, 2007

Слайд 7

Change in levels versus rate of change
When studying economic growth, it’s vitally

Change in levels versus rate of change When studying economic growth, it’s
important to understand the difference between a change in level and a rate of change.
When we say that real GDP “grew,” we mean that the level of real GDP increased.
We might say that U.S. real GDP grew during 2007 by $229 billion. If U.S. real GDP in 2006 was $11,295 billion, then U.S. real GDP in 2007 was $11,295 billion + $229 billion = $11,524 billion.
We could calculate the rate of change, or the growth rate, of U.S. real GDP during 2007 as: (($11,524 billion − $11,295 billion)/$11,295 billion) × 100 = ($229 billion/$11,295 billion) × 100 = 2.03%.

Слайд 8

Growth Rates

How did the United States manage to produce over six times

Growth Rates How did the United States manage to produce over six
more per person in 2007 than in 1907?
A little bit at a time.
Long-run economic growth is normally a gradual process, in which real GDP per capita grows at most a few percent per year. From 1907 to 2007, real GDP per capita in the United States increased an average of 1.8% each year.

Слайд 9


Growth Rates

The Rule of 70 tells us that the time it takes

Growth Rates The Rule of 70 tells us that the time it
a variable that grows gradually over time to double is approximately 70 divided by that variable’s annual growth rate.

Слайд 10

Growth Rates

United States

10%
8
6
4
2
0
-2

Average annual growth rate of real GDP per capita,
1980-2007

Ireland

Argentina

France

4.1%

2.0%

1.5%

0.8%

-1.4%

8.7%

China

India

Zimbabwe

4.1%

Growth Rates United States 10% 8 6 4 2 0 -2 Average

Слайд 11

India Takes Off
India achieved independence from Great Britain in 1947, becoming the

India Takes Off India achieved independence from Great Britain in 1947, becoming
world’s most populous democracy—a status it has maintained to this day.
Despite ambitious economic development plans, India’s performance was consistently sluggish. In 1980, India’s real GDP per capita was only about 50% higher than it had been in 1947. Real GDP per capita has grown at an average rate of 4.1% a year, tripling between 1980 and 2007.
What went right in India after 1980? Many economists point to policy reforms. For decades after independence, India had a tightly controlled, highly regulated economy. Today, things are very different: a series of reforms opened the economy to international trade and freed up domestic competition.

Слайд 12

The Luck of the Irish
In the nineteenth century, Ireland was desperately poor.
Even

The Luck of the Irish In the nineteenth century, Ireland was desperately
as late as the 1970s, Ireland remained one of the poorest countries in Western Europe, poorer than Latin American countries such as Argentina and Venezuela.
But for the last few decades real GDP per capita has grown almost as fast in Ireland as in China, and all that growth has made Ireland richer than most of Europe: Irish real GDP per capita is now higher than in the United Kingdom, France, and Germany.
Why has Ireland, after centuries of poverty, done so well?
A very good infrastructure and human capital.

Слайд 13

The Sources of Long-Run Growth

Labor productivity, often referred to simply as productivity,

The Sources of Long-Run Growth Labor productivity, often referred to simply as
is output per worker.
Physical capital consists of human-made resources such as buildings and machines.
Human capital is the improvement in labor created by the education and knowledge embodied in the workforce.
Technology is the technical means for the production of goods and services.

Слайд 14

Accounting for Growth: The Aggregate Production Function

The aggregate production function is a

Accounting for Growth: The Aggregate Production Function The aggregate production function is
hypothetical function that shows how productivity (real GDP per worker) depends on the quantities of physical capital per worker and human capital per worker as well as the state of technology.

Слайд 15

Accounting for Growth: The Aggregate Production Function

A recent example of an aggregate

Accounting for Growth: The Aggregate Production Function A recent example of an
production function applied to real data comes from a comparative study of Chinese and Indian economic growth by the economists Barry Bosworth and Susan Collins of the Brookings Institution.
They used the following aggregate production function:

Слайд 16

Accounting for Growth: The Aggregate Production Function

Using this function, they tried to

Accounting for Growth: The Aggregate Production Function Using this function, they tried
explain why China grew faster than India between 1978 and 2004.
About half the difference, they found, was due to China’s higher levels of investment spending, which raised its level of physical capital per worker faster than India’s.
The other half was due to faster Chinese technological progress.

Слайд 17

Diminishing Returns to Physical Capital

An aggregate production function exhibits diminishing returns to

Diminishing Returns to Physical Capital An aggregate production function exhibits diminishing returns
physical capital when, holding the amount of human capital and the state of technology fixed, each successive increase in the amount of physical capital leads to a smaller increase in productivity.

Слайд 18

Diminishing Returns to Physical Capital

A Hypothetical Example: How Physical Capital per Worker

Diminishing Returns to Physical Capital A Hypothetical Example: How Physical Capital per
Affects Productivity, Holding Human Capital and Technology Fixed

Слайд 19

Diminishing Returns to Physical Capital

A Hypothetical Example: Increases in Physical Capital per

Diminishing Returns to Physical Capital A Hypothetical Example: Increases in Physical Capital
Worker and the Growth Rate of Productivity, Holding Human Capital and Technology Fixed

Слайд 20

The Wal-Mart Effect
After 20 years of being sluggish, U.S. productivity growth accelerated

The Wal-Mart Effect After 20 years of being sluggish, U.S. productivity growth
sharply (grew at a much faster rate) in the late 1990s. What caused that acceleration? Was it the rise of the Internet?
According to McKinsey, the major source of productivity improvement after 1995 was a surge in output per worker in retailing—stores were selling much more merchandise per worker.
Why? Well Wal-Mart has been a pioneer in using modern technology (for example, computers) to improve productivity.
A lot of economic growth comes from everyday improvements rather than glamorous new technologies.

Слайд 21

Physical Capital and Productivity

$60,000
50,000
30,000
0

Real GDP per worker

$20,000 50,000 80,000

Physical capital per worker

Physical Capital and Productivity $60,000 50,000 30,000 0 Real GDP per worker
(2000 dollars)

A

B

C

Слайд 22

It May Be Diminished … But It’s Still Positive
Diminishing returns to physical

It May Be Diminished … But It’s Still Positive Diminishing returns to
capital is an “other things equal” statement: holding the amount of human capital per worker and the technology fixed, each successive increase in the amount of physical capital per worker results in a smaller increase in real GDP per worker.
This doesn’t mean that real GDP per worker eventually falls as more and more physical capital is added. It’s just that the increase in real GDP per worker gets smaller and smaller, albeit remaining at or above zero. So an increase in physical capital per worker will never reduce productivity.
Due to diminishing returns, at some point increasing the amount of physical capital per worker no longer produces an economic payoff.

Слайд 23

Growth Accounting

Growth accounting estimates the contribution of each major factor in the

Growth Accounting Growth accounting estimates the contribution of each major factor in
aggregate production function to economic growth.
The amount of physical capital per worker grows 3% a year.
According to estimates of the aggregate production function, each 1% rise in physical capital per worker, holding human capital and technology constant, raises output per worker by 1⁄3 of 1%, or 0.33%.
Total factor productivity is the amount of output that can be achieved with a given amount of factor inputs.

Слайд 24

Technological Progress and Productivity Growth

$120,000
90,000
60,000
30,000
0

Real GDP per worker (2000 dollars)

$20,000 50,000 80,000

Technological Progress and Productivity Growth $120,000 90,000 60,000 30,000 0 Real GDP
100,000

Physical capital per worker (2000 dollars)

Слайд 25

What about Natural Resources?

In contrast to earlier times, in the modern world,

What about Natural Resources? In contrast to earlier times, in the modern
natural resources are a much less important determinant of productivity than human or physical capital for the great majority of countries.
For example, some nations with very high real GDP per capita, such as Japan, have very few natural resources. Some resource-rich nations, such as Nigeria (which has sizable oil deposits), are very poor.

Слайд 26

The Information Technology Paradox

Many economists were
puzzled by the slowdown
in the

The Information Technology Paradox Many economists were puzzled by the slowdown in
U.S. growth rate of labor
productivity—a fall from an
average annual growth rate of
3% in the late 1960s to slightly
less than 1% in the mid-1980s.
This was surprising given that
there appeared to be rapid
progress in technology.
Why didn’t information technology
show large rewards?

Слайд 27

The Information Technology Paradox
MIT economics professor and Nobel laureate Robert Solow, a

The Information Technology Paradox MIT economics professor and Nobel laureate Robert Solow,
pioneer in the analysis of economic growth, declared that the information technology revolution could be seen everywhere except in the economic statistics.
Paul David suggested that a new technology doesn’t yield its full potential if you use it in old ways.
Productivity would take off when people really changed their way of doing business to take advantage of the new technology—such as, replacing letters and phone calls with electronic communications.
Sure enough, productivity growth accelerated dramatically in the second half of the 1990…

Слайд 28

Why Growth Rates Differ

A number of factors influence differences among countries in

Why Growth Rates Differ A number of factors influence differences among countries
their growth rates.
These are government policies and institutions that alter:
savings and investment spending.
foreign investment.
education.
Infrastructure.
research and development.
political stability.
the protection of property rights.

Слайд 29

Why Growth Rates Differ

Human Capital in Latin America and East Asia

Why Growth Rates Differ Human Capital in Latin America and East Asia

Слайд 30

Inventing R&D
Thomas Edison is best known as the inventor of the light

Inventing R&D Thomas Edison is best known as the inventor of the
bulb and the phonograph. But his biggest invention was “research and development”!!!
In 1875 Edison created something new: his Menlo Park, New Jersey, laboratory employed 25 men full-time to generate new products and processes for business. (http://www.edisonnj.org/menlopark/)
In other words, he did not set out to pursue a particular idea and then cash in. He created an organization whose purpose was to create new ideas year after year.
Research and development, or R&D, is spending to create and implement new technologies.

Слайд 31

The Role of Government in Promoting Economic Growth

Political stability and protection of

The Role of Government in Promoting Economic Growth Political stability and protection
property rights are crucial ingredients in long-run economic growth.
Even when governments aren’t corrupt, excessive government intervention can be a brake on economic growth.
If large parts of the economy are supported by government subsidies, protected from imports, or otherwise insulated from competition, productivity tends to suffer because of a lack of incentives.

Слайд 32

The Role of Government in Promoting Economic Growth

The Role of Government in Promoting Economic Growth

Слайд 33

The Brazilian Breadbasket
In recent years, Brazil’s economy has made a strong showing,

The Brazilian Breadbasket In recent years, Brazil’s economy has made a strong
especially in agriculture.
This success depends on exploiting a natural resource, the tropical savannah land known as the cerrado.
A combination of three factors changed this land into a useable resource:
technological progress due to research and development
improved economic policies
addition of physical capital
Brazil has already overtaken the United States as the world’s largest beef exporter and may not be far behind in soybeans.

Слайд 34

Old Europe and New Technology

Old Europe and New Technology

Слайд 35

Success, Disappointment, and Failure

Real GDP per
capita (log scale)

1960 1970 1980 1990 2000

Success, Disappointment, and Failure Real GDP per capita (log scale) 1960 1970
2007

Year

$100,000
10,000
1,000

Слайд 36

Success, Disappointment, and Failure

The world economy contains examples of success and failure

Success, Disappointment, and Failure The world economy contains examples of success and
in the effort to achieve long-run economic growth.
East Asian economies have done many things right and achieved very high growth rates.
In Latin America, where some important conditions are lacking, growth has generally been disappointing.
In Africa, real GDP per capita has declined for several decades, although there are some signs of progress now.

Слайд 37

Success, Disappointment, and Failure

The growth rates of economically advanced countries have converged,

Success, Disappointment, and Failure The growth rates of economically advanced countries have
but not the growth rates of countries across the world.
This has led economists to believe that the convergence hypothesis fits the data only when factors that affect growth, such as education, infrastructure, and favorable policies and institutions, are held equal across countries.

Слайд 38

Are Economies Converging?

Are Economies Converging?

Слайд 39

Success, Disappointment, and Failure

East Asia’s spectacular growth was generated by high savings

Success, Disappointment, and Failure East Asia’s spectacular growth was generated by high
and investment spending rates, emphasis on education, and adoption of technological advances from other countries.
Poor education, political instability, and irresponsible government policies are major factors in the slow growth of Latin America.
In sub-Saharan Africa, severe instability, war, and poor infrastructure— particularly affecting public health—have resulted in a catastrophic failure of growth. Encouragingly, the economic performance since the mid-1990s has been much better than in preceding years.

Слайд 40

Is World Growth Sustainable?

Long-run economic growth is sustainable if it can continue

Is World Growth Sustainable? Long-run economic growth is sustainable if it can
in the face of the limited supply of natural resources and the impact of growth on the environment.
Differing views about the impact of limited natural resources on long-run economic growth turn on the answers to three questions:
How large are the supplies of key natural resources?
How effective will technology be at finding alternatives to natural resources?
Can long-run economic growth continue in the face of resource scarcity?

Слайд 41

The Real Price of Oil, 1949-2007

Real domestic U.S. oil price
(2000 dollars, per

The Real Price of Oil, 1949-2007 Real domestic U.S. oil price (2000
barrel)

1949 1960 1970 1980 1990 2000 2007

Year

$60
50
40
30
20
10

Слайд 42

U.S. Oil Consumption and Growth over Time

Oil consumption
(thousands of
barrels per day)

1949 1960

U.S. Oil Consumption and Growth over Time Oil consumption (thousands of barrels
1970 1980 1990 2000 2007

Year

25,000
20,000
15,000
10,000
5,000

Real GDP
per capita
(2000 dollars)

$40,000
30,000
20,000
10,000

Слайд 43

Economic Growth and the Environment

The limits to growth arising from environmental degradation

Economic Growth and the Environment The limits to growth arising from environmental
are more difficult to overcome because overcoming them requires effective government intervention.
The emission of greenhouse gases is clearly linked to growth, and limiting them will require some reduction in growth.
However, the best available estimates suggest that a large reduction in emissions would require only a modest reduction in the growth rate.

Слайд 44

Climate Change and Growth

Carbon dioxide
emissions
(million metric tons)

1980 1985 1990 1995 2000 2005

Climate Change and Growth Carbon dioxide emissions (million metric tons) 1980 1985
Year

7,000
6,000
5,000
4,000
3,000
2,000
1,000

Слайд 45

Economic Growth and the Environment

There is broad consensus that government action to

Economic Growth and the Environment There is broad consensus that government action
address climate change and greenhouse gases should be in the form of market-based incentives, like a carbon tax or a cap and trade system.
It will also require rich and poor countries to come to some agreement on how the cost of emissions reductions will be shared.

Слайд 46

Growth is measured as changes in real GDP per capita in order

Growth is measured as changes in real GDP per capita in order
to eliminate the effects of changes in the price level and changes in population size. Levels of real GDP per capita vary greatly around the world: more than half of the world’s population lives in countries that are still poorer than the United States was in 1907. Over the course of the twentieth century, real GDP per capita in the United States increased fivefold.
Growth rates of real GDP per capita also vary widely. According to the Rule of 70, the number of years it takes for real GDP per capita to double is equal to 70 divided by the annual growth rate of real GDP per capita.

Слайд 47

The key to long-run economic growth is rising labor productivity, or just

The key to long-run economic growth is rising labor productivity, or just
productivity, which is output per worker. Increases in productivity arise from increases in physical capital per worker and human capital per worker as well as advances in technology. The aggregate production function shows how real GDP per worker depends on these three factors. Other things equal, there are diminishing returns to physical capital: holding human capital per worker and technology fixed, each successive addition to physical capital per worker yields a smaller increase in productivity than the one before. Growth accounting, which estimates the contribution of each factor to a country’s economic growth, has shown that rising total factor productivity is key to long-run growth. It is usually interpreted as the effect of technological progress.

Слайд 48

The large differences in countries’ growth rates are largely due to differences

The large differences in countries’ growth rates are largely due to differences
in their rates of accumulation of physical and human capital as well as differences in technological progress. A prime factor is differences in savings and investment rates. Technological progress is largely a result of research and development, or R&D.
Government actions that help growth are the building of infrastructure, particularly for public health, the creation and regulation of a well-functioning banking system that channels savings and investment spending, and the financing of both education and R&D. Government actions that retard growth are political instability, the neglect or violation of property rights, corruption, and excessive government intervention.

Слайд 49

The world economy contains examples of success and failure in the effort

The world economy contains examples of success and failure in the effort
to achieve long-run economic growth. East Asian economies have done many things right and achieved very high growth rates. In Latin America, where some important conditions are lacking, growth has generally been disappointing. In Africa, real GDP per capita has declined for several decades, although there are recent signs of progress. The growth rates of economically advanced countries have converged, but not the growth rates of countries across the world. This has led economists to believe that the convergence hypothesis fits the data only when factors that affect growth, such as education, infrastructure, and favorable policies and institutions, are held equal across countries.

Слайд 50

Economists generally believe that environmental degradation poses a greater problem for whether

Economists generally believe that environmental degradation poses a greater problem for whether
long-run economic growth is sustainable than natural resource scarcity. Addressing environmental degradation requires effective governmental intervention, but the problem of natural resource scarcity is often well handled by the market price response.
The emission of greenhouse gases is clearly linked to growth, and limiting them will require some reduction in growth. However, the best available estimates suggest that a large reduction in emissions would require only a modest reduction in the growth rate.

Слайд 51

There is broad consensus that government action to address climate change and

There is broad consensus that government action to address climate change and
greenhouse gases should be in the form of market-based incentives, like a carbon tax or a cap and trade system. It will also require rich and poor countries to come to some agreement on.
Имя файла: Long-run-Economic.pptx
Количество просмотров: 199
Количество скачиваний: 0