Механические передачи

Содержание

Слайд 2

Конструктивные особенности и параметры ЦКЗП.

В зубчатых колесах можно выявить 4 основных

Конструктивные особенности и параметры ЦКЗП. В зубчатых колесах можно выявить 4 основных
элемента:
зубчатый венец, включающий зубья, предназначенные для взаимодействия с сопряженным зубчатым колесом;
обод – часть зубчатого колеса, несущая зубчатый венец (1 на рис. 5.1, г и 5.2, а); наиболее часто обод совмещают с зубчатым венцом, но иногда их выполняют раздельными (например, из разных материалов);
ступица − часть зубчатого колеса, соединяющая его с валом, несущим зубчатое колесо (3 на рис. 5.1, г и 5.2, а); зубчатые колеса малого диаметра по сравнению с валом, несущим это колесо, выполняются, как правило, за одно целое с этим валом и называются вал-шестерня (рис. 5.1, д и 5.2, б);
.

Рис. 5.1. Цилиндрические зубчатые колёса.

Рис. 5.2. Конические зубчатые колёса.

диск − часть зубчатого колеса, соединяющая обод со ступицей; в литых и сварных зубчатых колесах диск зачастую заменяется отдельными спицами

Слайд 3

Рис. 5.3. Конструктивные параметры точеных и кованых колес.

Конструктивные параметры зубчатых колес представлены

Рис. 5.3. Конструктивные параметры точеных и кованых колес. Конструктивные параметры зубчатых колес
на рис. 5.3. Толщина обода цилиндрических и конических зубчатых колес может быть выбрана по соотношению
, (5.1)
в котором m – модуль зацепления (для конических колес следует использовать внешний модуль me (mte)), b – ширина зубчатого венца.

Толщину диска принимают равной:
для цилиндрических колёс , (5.2)
для конических колёс . (5.3)
Диаметр ступицы - dст = 1,55d, а её длину − lст = (0,8…1,5)d, где d – посадочный диаметр вала.
У колес большого диаметра с целью экономии легированной стали иногда применяют насадной зубчатый венец (сборные зубчатые колёса), который крепится на ободе так, чтобы исключить возможность его проворачивания.

Слайд 4

Рис. 5.4. Скольжение зубьев в процессе работы передачи

При работе эвольвентной зубчатой передачи

Рис. 5.4. Скольжение зубьев в процессе работы передачи При работе эвольвентной зубчатой
рабочие поверхности зубьев одновременно обкатываются и скользят друг по другу (рис. 5.4.). Учитывая, что тангенциальные скорости зубьев в полюсе зацепления для шестерни и колеса равны между собой, и разлагая тангенциальные скорости v1 и v2 контактирующих точек сопряженных зубьев на две составляющих, одна из которых (v1’ и v2’) направлена по линии зацепления, а вторая (v1” и v2”) – перпендикулярно к ней (по касательной к поверхности контакта), обнаруживаем, что в момент прохождения точки контакта через полюс зацепления касательные скорости контактирующих профилей равны нулю, и скольжение профилей отсутствует (рис. 5.4, б). Во всех остальных случаях касательная скорость части профиля, прилегающей к головке, больше аналогичной скорости контактирующего профиля сопряженного зуба, прилегающего к ножке последнего (рис. 5.4, а, в).

Слайд 5

Поскольку протяженность профилей ножки и головки примерно одинаковы, ножка зуба работает в

Поскольку протяженность профилей ножки и головки примерно одинаковы, ножка зуба работает в
наиболее неблагоприятных условиях (дольше работает в условиях трения скольжения), что ведет к её более интенсивному изнашиванию.

Рис. 5.5. Силы в прямозубой цилиндрической передаче.

Так как перенос точки приложения силы по линии её действия не меняет результатов действия силы, то силы взаимодействия зубьев принято определять в полюсе зацепления (рис. 5.5). Тогда нормальную силу взаимодействия рабочих поверхностей зубьев прямозубой передачи можно разложить на тангенциальную и радиальную составляющие. Из параллелограмма сил получаем
; и . (5.4)

Но, выражая тангенциальную силу через передаваемые моменты и конструктивные параметры передачи, имеем
. (5.5)

Слайд 6

В косозубой передаче за счет наклона продольной оси зуба к образующей делительного

В косозубой передаче за счет наклона продольной оси зуба к образующей делительного
цилиндра кроме тангенциальной и радиальной сил появляется осевая сила (рис. 5.6).Соотношения между составляющими силы взаимодействия зубьев в этом случае будут следующими:

; . И (5.6)
При этом соотношения (5.5), связывающие тангенциальную силу с геометрическими параметрами передачи, остаются теми же самыми.

Слайд 7

Рис. 5.7. Силы в прямозубой конической передаче.

В конической зубчатой передаче как и

Рис. 5.7. Силы в прямозубой конической передаче. В конической зубчатой передаче как
в цилиндрической косозубой появляются осевые составляющие силы взаимодействия зубьев, но причиной их возникновения является наклонное расположение зубьев. Силы в конической зубчатой передаче обычно приводятся к плоскости серединного сечения зубчатого венца (рис. 5.7).
Соотношения между силами, действующими на зубе шестерни бу­дут следующими
. (5.7)
А силы на колесе выражаются через силы на шестерне Fr2 = Fa1 и Fa2= Fr1.

Тангенциальная составляющая выражается в этом случае с помощью конструктивных параметров передачи следующим образом
. (5.8)

Слайд 8

Расчет ЦКЗП.

Основными критериями работоспособности закрытых зубчатых передач, обеспеченных достаточным количеством смазки является

Расчет ЦКЗП. Основными критериями работоспособности закрытых зубчатых передач, обеспеченных достаточным количеством смазки
контактная прочность взаимодействующих поверхностей зубьев и прочность зубьев на изгиб.
При недостаточной контактной прочности рабочих поверхностей зубьев на этих поверхностях в области ножки происходит прогрессирующее усталостное выкрашивание металла, нарушающее геометрию зацепления и ослабляющее поперечное сечение зуба по отношению к изгибным напряжениям, что в конечном итоге приводит к усталостному излому зуба.
Таким образом расчет ведется из условия
и (5.9)
При проектном расчете цилиндрических передач вначале вычисляется межосевое расстояние передачи
; (5.10)
где для прямозубой передачи Ka = 450 (Н/мм2)1/3;
для косозубой передачи Ka = 410 (Н/мм2)1/3;

Слайд 9

KH – коэффициент нагрузки, учитывающий условия работы зубьев и качество их рабочих

KH – коэффициент нагрузки, учитывающий условия работы зубьев и качество их рабочих
поверхностей и состоящий из произведения нескольких других коэффициентов; T1 – вращающий момент на шестерне, Нм; u - передаточное число передачи; [σ]H – допускаемые напряжения для материалов, из которых изготовлены зубчатые колеса передачи, МПа ψba – коэффициент ширины зубчатого венца колеса (венец шестерни обычно выполняется на 2…4 мм шире зубчатого венца колеса), изменяющийся обычно в пределах 0,2…0,5 в зависимости от способа закрепления валов, несущих зубчатые колеса. Полученное значение aw округляется до ближайшего большего стандартного значения.
Ширина зубчатого венца колеса в этом случае составит
. (5.11)
Далее определяется минимально допустимое значение модуля передачи
; (5.12)
где Km = 3,4⋅103 для прямозубых передач и
Km = 2,8⋅103 для косозубых передач;
KF – коэффициент нагрузки, зависящий от точности изготовления передачи, режима её работы и качества материалов зубчатых колес.

Слайд 10

Максимально возможное значение модуля зацепления определяют из условия неподрезания зубьев шестерни у

Максимально возможное значение модуля зацепления определяют из условия неподрезания зубьев шестерни у
основания
. (5.13)
В полученном диапазоне mmin…mmax выбирают стандартное значение модуля, учитывая, что при малом значении модуля увеличивается коэффициент перекрытия зубьев, повышается КПД, снижается уровень шума, уменьшаются отходы металла в стружку, сокращается трудоемкость изготовления колеса, но при больших значениях модуля передача менее чувствительна к неточности межосевого расстояния, выше изгибная прочность зубьев её колес.
Для косозубой передачи определяем минимальный угол наклона зуба
(5.14)
Далее определяют числа зубьев шестерни и колеса
и (5.14)
Полученные расчетом числа зубьев округляют до ближайшего целого значения и уточняют фактическое передаточное число и фактический угол наклона зубьев

Слайд 11

и (5.16)
При наличии перечисленных параметров остальные параметры передачи вычисляются по приведенным ранее формулам.
При

и (5.16) При наличии перечисленных параметров остальные параметры передачи вычисляются по приведенным
проектном расчете конических зубчатых передач в первую очередь вычисляют внешний делительный диаметр зубчатого колеса, поскольку именно он определяет в конечном итоге максимальный габаритный размер передачи.
; (5.17)
где Kd = 165 – вспомогательный коэффициент; T2 – вращающий момент на зубчатом колесе (на выходном валу), Нм; KHβ - коэффициент неравномерности распределения нагрузки по длине зуба, зависящий от твердости поверхностей зубьев и характера закрепления валов, несущих зубчатые колеса передачи; [σ]H – допускаемые контактные напряжения для материалов из которых изготовлены зубчатые колеса; vH – коэффициент, учитывающий ослабление зубьев конической передачи по сравнению с цилиндрической, для прямозубой конической передачи vH = 0,85; u − необходимое передаточное число конической зубчатой передачи
Полученное значение внешнего делительного диаметра колеса следует округлить до ближайшего стандартного значения.
Ширину зубчатого венца можно определить по соотношению
; (5.18).

Слайд 12

где - коэффициент ширины зубчатого венца.
Число зубьев колеса вычисляют по эмпирической формуле
; (5.19)
где

где - коэффициент ширины зубчатого венца. Число зубьев колеса вычисляют по эмпирической
коэффициент С изменяется в пределах от 11,2 до 18 в зависимости от вида термической обработки рабочих поверхностей зубьев.
Далее вычисляют число зубьев шестерни
; (5.20)
Полученные числа зубьев округляют до ближайших целых величин и определяют фактическое передаточное число uф = z2/z1 с точностью не ниже 4-х знаков после запятой.
После этого вычисляют минимально допустимый внешний окружной модуль из условия прочности зуба при изгибе
Имя файла: Механические-передачи.pptx
Количество просмотров: 405
Количество скачиваний: 1