Содержание
- 2. Популяция и популяционная динамика В биологии: популяция - совокупность особей вида, входящая в состав биогеоценоза. Популяционная
- 3. Популяционная модель неограниченного роста Модель предложена Т. Мальтусом в 1798 г. в его работе "О росте
- 4. Популяционная модель ограниченного роста Впервые ограниченный рост популяции, описал Ферхюльст (1848) – в логистическом уравнении. Это
- 5. Популяционная модель ограниченного роста Уравнение ограниченного роста обладает двумя важными свойствами: при малых х численность х
- 6. Проверка возможности прогнозирования популяции интерполированием Используя экспериментальные данные, проверить возможность прогнозирования численности популяции обычными методами интерполяции.
- 7. Результаты проверки возможности прогнозирования
- 8. Вывод: Методы интерполяции с использованием трендов, имеющиеся в MS Excel, не могут быть использованы для прогнозирования
- 9. Исследование модели популяции
- 10. Постановка задачи Имеется заброшенный пруд, который может быть использован для разведения карпа. Карпы питаются за счет
- 11. Описание математической модели Дано: Nn+1 - численность карпа в году n+1. Nn - численность карпа в
- 12. Математическая модель с учетом ежегодного отлова Дано: Nn+1 - численность карпа в году n+1; Nn -
- 13. Популяция карпа компьютерная модель в Excel Размещение исходных данных.
- 14. Цель моделирования Определить емкость популяции. Определить максимальный годовой улов рыбы, после стабилизации популяции на уровне емкости
- 15. Задание Создать отчет о проведенном исследовании в виде презентации. 1.Слайд «Название и автор». 2.Исследование возможности прогнозирования
- 16. Популяция карпа компьютерная модель, анализ результатов Определение емкости популяции Определение улова (недолов) Определение улова (перелов) Определение
- 17. Исследование влияния коэффициента рождаемости
- 18. Динамика численности Lucilia cuprina Стохастический характер численности популяции при высоком коэффициенте рождаемости.
- 19. Список источников информации Задачник по моделированию «Информатика и ИКТ» 9-11 класс, Макарова Н.В., «Питер», 2008 год.
- 21. Скачать презентацию