Содержание
- 2. Что такое? Пирамидой ( SABCD ) называется многогранник, который состоит из плоского многоугольника - основания пирамиды
- 3. Правильная пирамида Отметим некоторые свойства правильной n-угольной пирамиды на примере треугольной пирамиды.Как известно центр правильного треугольника
- 4. Формулы для пирамид Площадью полной поверхности пирамиды называется сумма площадей всех её граней Sполн=Sбок+Sосн; Площадь боковой
- 5. Задача1: Основание пирамиды – треугольник, две стороны которого равны 1 и 2, а угол между ними
- 7. Скачать презентацию
Слайд 2Что такое?
Пирамидой ( SABCD ) называется многогранник, который состоит из плоского многоугольника
Что такое?
Пирамидой ( SABCD ) называется многогранник, который состоит из плоского многоугольника

Треугольники SAB, SBC, SCD, SDA - боковые грани.
Прямые SA, SB, SC, SD - боковые ребра пирамиды.
Перпендикуляр SO, опущенный из вершины на основание, называется высотой пирамиды и обозначается Н.
Пирамида называется правильной, если ее основание - правильный многоугольник, а высота ее проходит через центр основания.
Боковые грани правильной пирамиды - равнобедренные треугольники, равные между собой.
Высота боковой грани правильной пирамиды - апофема пирамиды.
Треугольная пирамида называется тетраэдром.
Слайд 3Правильная пирамида
Отметим некоторые свойства правильной n-угольной пирамиды на примере треугольной пирамиды.Как известно
Правильная пирамида
Отметим некоторые свойства правильной n-угольной пирамиды на примере треугольной пирамиды.Как известно

Свойство 1: В правильной n-угольной пирамиде все боковые ребра равны между собой. Из равенства ребер следует и равенство боковых граней. Треугольники АВМ, ВСМ и АСМ равны по трем сторонам.
Свойство 2: Все боковые грани правильной n-угольной пирамиды суть равные равнобедренные треугольники, поэтому все плоские углы при вершине равны, все плоские углы при основании равны. Из равенства прямоугольных треугольников ОРМ, ОТМ и ОКМ (ОТ=ОР=ОК как радиусы вписанной окружности; МО - общая) следует равенство всех двугранных углов при основании пирамиды РОРМ=РОТМ=РОКМ
Свойство 3: В правильной n-угольной пирамиде все двугранные углы при основании равны.
Слайд 4Формулы для пирамид
Площадью полной поверхности пирамиды называется сумма площадей всех её граней
Sполн=Sбок+Sосн;
Площадь
Формулы для пирамид
Площадью полной поверхности пирамиды называется сумма площадей всех её граней
Sполн=Sбок+Sосн;
Площадь

Площадь боковой грани
Sбок.гр=1/2 x mx\g\,
где m – апофема, \g\ - основание грани;
Теорема: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
Sбок=1/2 x(Pосн x m),
где m – апофема, Р – периметр многоугольника основания;
Объём пирамиды
V=(1/3) x Sосн x h.
Слайд 5Задача1: Основание пирамиды – треугольник, две стороны которого равны 1 и 2,
Задача1: Основание пирамиды – треугольник, две стороны которого равны 1 и 2,

Найдите объем пирамиды.
Решение. Так как все ребра (боковые) пирамиды равны, они одинаково наклонены к основанию, и вершина пирамиды проектируется в центр описанной вокруг основания окружности. (см. чертеж).
Объем пирамиды: , ,
Высоту SO можно найти по т. Пифагора например, из треугольника ASO. Для этого нужно найти AO – радиус описанной окружности основания.
Воспользуемся теоремой синусов: .Но сначала по
теореме косинусов найдем сторону BC: ,
BC= .
Теперь вычислим радиус описанной окружности:
Найдем SO: .
Вычислим объем: . Ответ: V=1.
Задача
Спаси Принцессу!
Характеристика специализации основных сельскохозяйственных районов Китая, объяснение причин
Пятая общешкольная конференция
Гомельская область
Ничто, за исключением монетного двора, не делает деньги без рекламы. Томас Б. Макалей
Интеллектуальная летучка по теме: Развитие государства и права США в XX веке
“Қазақстан Республикасының парламент мәжілісі” сайлауларының эволюциясы
ИПОТЕЧНОЕ СТРАХОВАНИЕ
Однажды в ДКП
Математика и русский язык: сотрудничество или конфликт?
СoffeeLike, Курск
Пенсионное обеспечение в Республике Казахстан
report_15.08-09
Административное право как отрасль права
Земли приграничных территорий
Евгений Замятин
Экологический мониторинг на региональном уровне
Тема 5
Е.И. Тавер
Информационные вызовы современности и их отображение в информационном пространстве
Общегосударственное противодействие терроризму
Качества людей и явления действительности, подверженные критике Федотова в картинах Завтрак аристократа, Вдовушка
Государственное образовательное учреждение детский сад № 1758 общеразвивающего вида с приоритетным осуществлением художественно-
Инерция и трение. Опыты Галилея
Новогодний подсвечник. Творческая работа
Тригонометрические функции
Тема: «Фотосинтез и дыхание»
Мероприятия по реконструкции тепловых сетей, находящихся в муниципальной собственности