Содержание
- 2. Тема 6: Показатели в форме средних величины План Понятие средней величины Виды средних величин Особенности и
- 3. Какая бригада работает оперативнее? Бригада А, в минутах: 10; 19; 15; 20; 13; 40; 11; 18;
- 4. Какая бригада работает оперативнее? Бригада А Среднее время в минутах: 202 : 10 = 20,2 мин.
- 5. Средняя величина – обобщающая количественная характеристика признака на единицу конкретной совокупности или группы
- 6. Средняя – «центр вселенной» для набора данных Х3 Х2 Хn Х5 Х6 Х1 Х4 Х1
- 7. Нужны ли нам средние??? X __
- 8. Определяющее свойство средней величины Определяющее свойство средней величины X1 = 200 X2 = 300 X3 =
- 9. Объективность средней Средняя дает наиболее объективный результат только при качественной однородности объектов доход 6 000 руб.
- 10. Объективность средней доход 8 000 руб. 10 000 руб. 6 000 руб. = 8 000 руб.
- 11. Среднедушевые денежные доходы населения РФ
- 12. СДД населения РФ в 2013 г.
- 13. Кто на каком месте по уровню дохода за 2012 и 2013 гг? ?
- 14. Доходы глав государств за 2012 и 2013 гг. 290 тыс. евро 380-590 тыс.евро 530 тыс. евро
- 15. Логическая формула средней Общая логическая формула средней - ИСС – исходное соотношение средней Для каждого вида
- 16. Примеры ИСС Средний стаж работы судьи = Средний возраст совершения преступления несовершеннолетними = Средний счет в
- 17. Примеры ИСС Средний размер одного вклада в банк
- 18. Виды средних величин Арифметическая Гармоническая Геометрическая Квадратическая Хронологическая Структурные взвешенная простая дискретные интервальные
- 19. Средняя арифметическая Простая – используется для расчета средней по несгруппированным данным или по группировкам с равными
- 21. Решаем Задачу 1, Учебник стр. 110 1. Рабочие бригады имеют следующий стаж работы на данном предприятии:
- 22. Средняя арифметическая Взвешенная – используется для расчета средней по группировкам и рядам распределения Xi – значение
- 23. Пример 1
- 24. Пример 1
- 25. Практическое задание Решаем Задачу 2, Учебник стр. 110-111 Распределение рабочих предприятия по тарифному разряду имеет следующий
- 26. Практическое задание Решаем Задачу 7, Учебник стр. 113 По трем районам имеются следующие данные (на конец
- 27. Пример 2 22,5; 27,5; 35,0; 45,0; 55,0; 65,0.
- 28. Определение середины открытого интервала Ширина открытого интервала условно приравнивается к ширине соседнего закрытого интервала. Зная ширину,
- 29. Пример 2 22,5; 27,5; 35,0; 45,0; 55,0; 65,0.
- 30. Пример 3
- 31. Практическое задание Решаем задачу 4, Учебник, стр. 112
- 32. Практическое задание Решаем задачу 5, Учебник, стр. 112 Найдите среднедушевые денежные доходы по следующим данным
- 33. Средняя гармоническая Средняя гармоническая используется в случаях, когда в исходных данных нет прямой информации о количестве
- 34. Средняя гармоническая Средняя цена = Стоимость реализованного товара ---------------------------------------------------- Количество реализованного товара
- 35. Средняя гармоническая = = 1900 +2800 + 2070 ------------------------------ 1900 2800 2070 ----- + ----- +
- 36. Средняя гармоническая W1 + W2 + W3 = ------------------------------ = W1 W2 W3 ----- + -----
- 37. Средняя гармоническая взвешенная Средняя гармоническая чаще используется во взвешенной форме = Xi*fi = Wi
- 38. Практическое задание Решаем задачу 6, Учебник, стр. 113
- 39. Средняя геометрическая Используется в основном для расчета средних аналитических показателей в рядах динамики.
- 40. Средняя квадратическая Средняя квадратическая рассчитывается по формулам Невзвешенная Взвешенная
- 41. Структурные средние Мода (Мo) представляет собой значение признака, повторяющееся с наибольшей частотой. Медианой (Мe) называется значение
- 42. Методики расчета Мо и Ме для дискретных и интервальных рядов РАЗЛИЧАЮТСЯ !!!
- 43. Мо и Ме в дискретном ряду Оптовые цены товара «XXX», тыс. рублей 4,4 4,3 4,4 4,5
- 44. Мо и Ме в дискретном ряду Доходы потребителей полиграфического издания Ме = NМе = (100+1)/2 =
- 45. Мо и Ме в дискретном ряду Ме = ?
- 46. Мо и Ме в дискретном ряду Ме = 54 По накопленным частотам видно, что цена «52»
- 47. Практическое задание Решаем задачу 10, Учебник, стр. 115
- 48. Материалы слайдов 49-59 будут рассмотрены на лекции №5.
- 49. Мо и Ме в интервальном ряду
- 50. max Mo модальный интервал Мо и Ме в интервальном ряду
- 51. Мо и Ме в интервальном ряду
- 52. Мо и Ме в интервальном ряду
- 53. Мо и Ме в интервальном ряду
- 54. Ме медианный интервал
- 56. Как рассчитать Мо и Ме?
- 57. Как рассчитать Мо и Ме? Ответ: найти Мо и Ме по этим данным нельзя, так как
- 58. Какой интервал является модальным?
- 59. Практическое задание Решаем задачу 12, Учебник, стр. 116
- 61. Скачать презентацию