Развитие логического мышления на уроках математики

Содержание

Слайд 2

Приёмы логической мыслительной деятельности:

Необычный подход к рассмотрению вопроса;
Поиск ассоциации;
Перенос идеи из другой

Приёмы логической мыслительной деятельности: Необычный подход к рассмотрению вопроса; Поиск ассоциации; Перенос
области знаний;
«Игра» с объектами и идеями.

Слайд 3

Приёмы развития логического мышления.

Дидактические игры;
Математические головоломки;
Числовые ребусы;
Геометрия в пространстве;
Задачи- шутки;
Включение в урок

Приёмы развития логического мышления. Дидактические игры; Математические головоломки; Числовые ребусы; Геометрия в
математических героев.

Слайд 4

Дидактические игры.

В игре всегда содержится элемент неожиданности и необычности, решается какая-либо задача,

Дидактические игры. В игре всегда содержится элемент неожиданности и необычности, решается какая-либо
проблема, т. е. игра выполняет на уроке те же функции, что и занимательная задача. Очень часто здесь присутствует соревновательный элемент и возможности для создания игровых ситуаций чрезвычайно велики.

Слайд 5

Игра в – 66.

Играют двое. Первый записывает любое целое отрицательное число, большее

Игра в – 66. Играют двое. Первый записывает любое целое отрицательное число,
-10, второй, устно прибавив к нему целое отрицательное число, большее -10, записывает сумму, первый к этой сумме устно прибавляет целое отрицательное число, большее -10, и записывает сумму и т. д. Побеждает тот, кто запишет число -66.

Слайд 6

Математические головоломки.

Основное достоинство подобных заданий- они требуют от ученика выделения существенных связей

Математические головоломки. Основное достоинство подобных заданий- они требуют от ученика выделения существенных
между компонентами заданий, при этом часто происходит смена хода мысли учеников на обратный, что увеличивает свободу действий ученика, которая в обычных условиях достигается очень редко.

Слайд 7

Математические головоломки.

Вырежьте 16 одинаковых квадратов 4-х цветов – по 4 квадрата каждого

Математические головоломки. Вырежьте 16 одинаковых квадратов 4-х цветов – по 4 квадрата
цвета. На 4-х квадратах каждого цвета напишите цифры 1, 2, 3, 4. Сложите теперь квадрат так, чтобы одинаковые цифры и одинаковые цвета не повторялись ни в строках, ни в столбцах, ни на диагоналях квадрата.

Слайд 8

Числовые ребусы.

В этом логическом приёме используются зашифрованные задания, требующие рассуждений, обратных тем,

Числовые ребусы. В этом логическом приёме используются зашифрованные задания, требующие рассуждений, обратных
к которым привыкли ученики. Фактически числовые ребусы есть ни что иное, как клубок логических связей, который надо распутать.

Слайд 9

Русский язык + математика = логика.

один вагон деталь
+ один +

Русский язык + математика = логика. один вагон деталь + один +
вагон + деталь
--------- ---------- ------------
много состав изделие
Вместо одинаковых букв надо вставить одинаковые цифры так, чтобы получилось верное равенство.

Слайд 10

Геометрия в пространстве.

Геометрия в целом, как и её основные составляющие- фигуры, логика

Геометрия в пространстве. Геометрия в целом, как и её основные составляющие- фигуры,
и практическая применимость- позволяют учителю гармонично развивать образное и логическое мышление ребёнка любого возраста, прививать ему навыки практической деятельности.

Слайд 11

Стереозрение.

Стереозрение.

Слайд 12

Задачи – шутки.

На первый взгляд эти задачи очень простые, но нельзя спешить

Задачи – шутки. На первый взгляд эти задачи очень простые, но нельзя
быстро дать ответ- он может оказаться неверным. Правильное решение таких задач чаще всего не требует никаких дополнительных знаний,- главное внимательно читать условие задачи и постараться миновать расставленные ловушки.

Слайд 13

Математик, который не является поэтом, никогда не достигнет совершенства в математике.

Тигр старше

Математик, который не является поэтом, никогда не достигнет совершенства в математике. Тигр
дикобраза в два с половиной раза,
По сведениям удода тому назад три года
В семь раз он старше был,
Чем дикобраз.
Учтите всё и взвесьте:
Сколько же им вместе?-
Позвольте мне спросить у вас.

Слайд 14

Включение в урок математических героев.

В урок вводится какой-либо математический герой, который или

Включение в урок математических героев. В урок вводится какой-либо математический герой, который
решает задание, или предлагает его для решения, или придумывает фокусы и т. д. Иногда вводятся два героя: один сообразительный, а другой невнимательный.

Слайд 15

Творческим считается любое действие, которое эффективно и вызывает удивление.

Сказка- это поэзия. Казалось

Творческим считается любое действие, которое эффективно и вызывает удивление. Сказка- это поэзия.
бы сказка и математика- понятия не совместимые. Яркий сказочный образ и сухая абстрактная мысль! Но часто решать такие задачи очень увлекательно, хочется помочь попавшему в беду любимому герою. Красота решения, неожиданный поворот мысли, логика рассуждений- всё это усиливает интерес к этим задачам.
Имя файла: Развитие-логического-мышления-на-уроках-математики.pptx
Количество просмотров: 275
Количество скачиваний: 0