Система питания ноутбука

Содержание

Слайд 2

Целевая аудитория
Все электротехники, такие как:
PE, TE, FAE, CSD
Необходимые знания
Электронные

Целевая аудитория Все электротехники, такие как: PE, TE, FAE, CSD Необходимые знания
схемы
Цифровые логические схемы
Использование мульти-метра
Содержание курса
Система питания и последовательности
Поиск неисправностей
Выводы
Принцип передачи мощности( ШИМ-Plus импульсной модуляции & LDO –Low Drop-Out regulator )
Зарядное устройство
После этого курса Вы будите
Уметь находить неисправности в цепях питания

Для кого эта презентация

Слайд 3

1.1 Введение в NB системы питания
1.2 Последовательность питания и управления
2.1

1.1 Введение в NB системы питания 1.2 Последовательность питания и управления 2.1
Блок-схема цепей питания
2.2 NB power application
2.3 Multi–power device
3.1 No power debug notice & sequence
3.2 DCBATOUT short(短路) to GND
3.2 S5 Power No Good
3.3 Power on logic No Good

План:

1. Архитектура цепей питания:

3. No power debug :

2. Введение в схему питания:

План

Слайд 4

Как мы знаем, ноутбук питание обеспечивается адаптерами (19V) или батарей (14.8V).

Как мы знаем, ноутбук питание обеспечивается адаптерами (19V) или батарей (14.8V). Тем
Тем не менее, различные (不同 的) напряжения питания не подходят (適合) все устройства к каждому ноутбуку. Так ряд действий по передаче напряжения необходимы для питания всех устройств. (Могут возникнуть проблемы (發生) во время передачи напряжения.)
Как ноутбук портативный компьютер, экономя энергию также очень важно, когда система находится в режиме работы от батареи.
В этом уроке, мы будем использовать схему питания Юхина внедрить систему питания ноутбука.

• Foreword :

Foreword

Слайд 5

1.1 NB (Yuhina) power system : AUX Power

PWM

Charger

P-MOS
SI4425
P-MOS
SI4425

PWM
MAX1999
PWM
MAX1715

AD+

BT+

N-MOS
FD9412

N-MOS
FD9412

N-MOS
FD9412

N-MOS
FD9412

5V_S5
Max1999_LDO5
5V_AUX_S5
+5V_UP_S5

3D3V_S5

DCBATOUT

N-MOS
FD9412

LDO
G913C

5V_S3

3D3V_S3

5V_S0

3D3V_S0

3D3V_LAN_S5

1D5V_S5

2D5V_S3

2D5V_S0

LDO
G913C

1D25V_S0

S5 Power

S3 Power

S0

1.1 NB (Yuhina) power system : AUX Power PWM Charger P-MOS SI4425
Power
PWM
MAX1546

VCC_CORE_S0

1D5V_S0

1

4

3

2

1

6

6

5

7

6

4

7

7

5

1.Power system architecture 1 of 4

Слайд 6

1.1 NB (Yuhina) power system : S5 Power

PWM
MAX1645

Charger

P-MOS
SI4425
P-MOS
SI4425

PWM
MAX1999
PWM
MAX1715

AD+

BT+

N-MOS
FD9412

N-MOS
FD9412

N-MOS
FD9412

N-MOS
FD9412

5V_S5
Max1999_LDO5
5V_AUX_S5
+5V_UP_S5

3D3V_S5

DCBATOUT

N-MOS
FD9412

LDO
G913C

5V_S3

3D3V_S3

5V_S0

3D3V_S0

3D3V_LAN_S5

1D5V_S5

2D5V_S3

2D5V_S0

LDO
G913C

1D25V_S0

S5 Power

S3 Power

S0 Power
PWM
MAX1546

VCC_CORE_S0

1D5V_S0

1

4

3

2

1

6

6

5

7

6

4

7

7

5

1.Power

1.1 NB (Yuhina) power system : S5 Power PWM MAX1645 Charger P-MOS
system architecture 2 of 4

Слайд 7

1.1 NB (Yuhina) power system : S3 Power

PWM
MAX1645

Charger

P-MOS
SI4425
P-MOS
SI4425

PWM
MAX1999
PWM
MAX1715

AD+

N-MOS
FD9412

N-MOS
FD9412

N-MOS
FD9412

N-MOS
FD9412

5V_S5
Max1999_LDO5
5V_AUX_S5
+5V_UP_S5

3D3V_S5

DCBATOUT

N-MOS
FD9412

LDO
G913C

5V_S3

3D3V_S3

5V_S0

3D3V_S0

3D3V_LAN_S5

1D5V_S5

2D5V_S3

2D5V_S0

LDO
G913C

1D25V_S0

S5 Power

S3 Power

S0 Power
PWM
MAX1546

1D5V_S0

1

4

3

2

1

6

6

5

7

6

4

7

7

5

BT+

1.Power

1.1 NB (Yuhina) power system : S3 Power PWM MAX1645 Charger P-MOS
system architecture 3 of 4

Слайд 8

PWM
MAX1645

Charger

P-MOS
SI4425
P-MOS
SI4425

PWM
MAX1999
PWM
MAX1715

AD+

N-MOS
FD9412

N-MOS
FD9412

N-MOS
FD9412

N-MOS
FD9412

5V_S5
Max1999_LDO5
5V_AUX_S5
+5V_UP_S5

3D3V_S5

DCBATOUT

N-MOS
FD9412

LDO
G913C

5V_S3

3D3V_S3

5V_S0

3D3V_S0

3D3V_LAN_S5

1D5V_S5

2D5V_S3

2D5V_S0

LDO
G913C

1D25V_S0

S5 Power

S3 Power

S0 Power
PWM
MAX1546

1D5V_S0

1

4

3

2

1

6

6

5

7

6

4

7

7

5

BT+

1.1 NB (Yuhina) power system : S0 Power

1.Power

PWM MAX1645 Charger P-MOS SI4425 P-MOS SI4425 PWM MAX1999 PWM MAX1715 AD+
system architecture 4 of 4

Слайд 9

Почему мы должны различать тип питания среди (在 ... 之中) AUX, S5,
S3,

Почему мы должны различать тип питания среди (在 ... 之中) AUX, S5,
S0? Как мы их контролировать?
Вот ответ:
• AUX Power : Для использования кнопки питания, он включен с батареей только до нажатия на кнопку питания.
• S5 Power : Для кнопки питания и после использования на LAN, он включен с адаптером, прежде чем нажать кнопку питания.
• S3 Power : Для stand_by режиме использования, он включен с южного моста PM_SLP_S3 # после нажатия кнопки питания.
• S0 Power : Для нормального использования режима, он включен с южного моста -PM_SLP_S4 # после нажатия на кнопку питания.

1.2 Последовательность питания и управления:

Слайд 10

AUX
Power

S5
Power

S3
Power

S0
Power

BAT only

AD+

or

AUX_S5

3D3V_S5
1D5V_S5

DCBATOUT

AC_IN

PM_SLP_S4#

PM_SLP_S3#

5V_S3
3D3V_S3
2D5V_S3

5V_S0
3D3V_S0
2D5V_S0
1D25V_S0
Vco_S0

For power button use

For stand_by
mode use

For normal mode use

For power

AUX Power S5 Power S3 Power S0 Power BAT only AD+ or
button &
wake on LAN use

Block Diagram :

Слайд 11

DCBATOUT
a. Когда батарея или адаптер подключен в (插入), DCBATOUT будет вводить

DCBATOUT a. Когда батарея или адаптер подключен в (插入), DCBATOUT будет вводить
питание в MAX1999 контактный 20_V +, и пин-код 18 - LDO5 обеспечит питание 5V_AUX_S5.
c. 5V_AUX_S5 никогда не выключен, когда MAX1999 работает, если что-то пойдет не так с MAX1999.
b. Сила AUX используется на
Мощность по логике и южного моста.Как только батареи, ток утечки должен быть как можно меньше. В общем, около 5 ~ 6 мА.

1.2.1  AUX_Power :

Слайд 12

Сигнал AC_IN потянули, когда адаптер был вставлен.
Мощность по логике вывода

Сигнал AC_IN потянули, когда адаптер был вставлен. Мощность по логике вывода MAX1999_SD,
MAX1999_SD, чтобы вызвать 3D3V_S5. В результате, когда адаптер вставляется, но пока нажата кнопка питания, S5_power будет включен первым.

Hi

Hi

Hi

Hi

Low

a. Circuit operation – Power on logic :

1

1

2

2

1.2.2 S5_Power:

Слайд 13

When MAX1999 – Pin 3(ON3) pull hi, the 3D3V_S5 will be

When MAX1999 – Pin 3(ON3) pull hi, the 3D3V_S5 will be turn
turn on.

b. Circuit operation – 3D3V_S5 :

Слайд 14

When AC_IN is HI,
The MOS-U13 will be turned on,

When AC_IN is HI, The MOS-U13 will be turned on, and 3D3V_LAN_S5
and 3D3V_LAN_S5 will be generated.
This power is for wake on LAN function.
Мощность 1D5V_S5 LDO будет включен в 3D3V_S5.
Эта сила для южного моста для пробуждения по локальной сети использования. Потому что адаптер питания вставлен уже ток утечки батареи не относятся в настоящее время。

1D5V_S5 LDO

Hi

Hi

Hi

Low

1

2

1

2

3

3

c. Circuit operation – LAN & 1D5V_S5 power :

Слайд 15

When the power button was pressed, south bridge will pull hi

When the power button was pressed, south bridge will pull hi the
the PM_SLP_S4#, and 5V_S3 power will be generated .

1.2.3 S3_Power:

a. Circuit operation – 5V_S3 :

1.2.3 S3_Power:

Слайд 16

3D3V_S3 power is generated by U25 N-MOS from 3D3V_S5 when PM_SLP_S4# is

3D3V_S3 power is generated by U25 N-MOS from 3D3V_S5 when PM_SLP_S4# is
hi .

Hi

Hi

Low

b. Circuit operation – 3D3V_S3 :

Слайд 17

When 5V_S3 power was building, MAX1715 pin – 11 is pulled hi,

When 5V_S3 power was building, MAX1715 pin – 11 is pulled hi,
and 2D5V_S3 will be turned on .

2D5D_S3_ON

c. Circuit operation – 2D5V_S3 :

Слайд 18

Функция режима ожидания для экономии энергии, когда система не работает так же,

Функция режима ожидания для экономии энергии, когда система не работает так же,
как ниже настройки. Так, мощность S3 для такого использования.

• Система войдет в режим ожидания, если NB остается в бездействии в течение 30 минут.
• В режиме ожидания, если кнопка питания нажата, система вернется в предыдущее состояние в 5 сек.
• Из-за состояния возобновляется из памяти, мы должны S3 власть, чтобы North Bridge & DDR работает стоя на. В этом состоянии, ток утечки батареи при 30 мА.

Why Notebook needs S3 power – Stand-by mode function ?

d. S3 power Purpose :

Слайд 19

After PM_SLP_S4# signal was generated for a few μ sec ,

After PM_SLP_S4# signal was generated for a few μ sec , the
the South Bridge will output PM_SLP_S3# on hi level, and 1D5V_S0 will be turned on .

a. Circuit operation – 1D5V_S0 :

1.2.3 S0_Power:

Слайд 20

PM_SLP_S3# signal is also used to turn on 5V、3D3V、2D5V_S0.

b. Circuit operation –

PM_SLP_S3# signal is also used to turn on 5V、3D3V、2D5V_S0. b. Circuit operation – 5V,3D3V,&2D5V_S0 :
5V,3D3V,&2D5V_S0 :

Слайд 21

-- P4 CPU_ VCO power – architecture :

PWM
MAX1546

CPU

LDO
CM2843

Phase 1
Power module

Phase 2
Power

-- P4 CPU_ VCO power – architecture : PWM MAX1546 CPU LDO
module

Phase 3
Power module

3D3V_S0

1D2V_VID

H_VID0~5

DCBATOUT

DCBATOUT

DCBATOUT

VCC_CORE_S0

PWRGD_VID

1

5

4

3

2

1546
DHM & DLM

6

p.s. As one phase of power module can only supply 25A, and Yuhina CPU needs 66A, therefore 3 phrases are required.

1 of 4

c. Circuit operation – P4 CPU VCC_CORE_S0 :

Слайд 22

3D3V_S0 power on .
CM2843 provides 1D2V_VID to CPU.
CPU provides

3D3V_S0 power on . CM2843 provides 1D2V_VID to CPU. CPU provides VID
VID code
PWRGD_VID, which is provided by CM2843, will delay 1ms
while 1D2V_VID is on. So it will be turned on after the CPU VID code.

1

1

2

4

2

4

3

3

CPU

H_VID0~6

2 of 4

c. Circuit operation – P4 CPU VCC_CORE_S0 :

Слайд 23

4

5

3

5

1

1

2

1

MAX1546 Power is ready .
CM1843 generates 1D2V_VID to CPU.
CPU provides the VID0~5

4 5 3 5 1 1 2 1 MAX1546 Power is ready
to the MAX1546 ..
CM1843 will send PWRGD_VID as Hi after 1ms that 1D2V_VID was generated.
MAX1546 will output the switching signal .

4

5

CM1843

CPU

4

PWRGD_VID

2

1D2V_VID

3

3 of 4

c. Circuit operation – P4 CPU VCC_CORE_S0 :

Слайд 24

The step-down circuit starts working as soon as the switch signal begins.
The

The step-down circuit starts working as soon as the switch signal begins.
VCC_CORE is produced and will provide the CPU’s working power .
PS. This is one of the three phases in VCC_CORE.

5

6

5

6

4 of 4

c. Circuit operation – P4 CPU VCC_CORE_S0 :

Слайд 25

PWM
MAX1546
ISL6218

CPU

LDO
CM2843

Phase 1
Power module

Phase 2
Power module

Phase 3
Power module

3D3V_S0

1D2V_VID

H_VID0~5

DCBATOUT

DCBATOUT

DCBATOUT

VCC_CORE_S0

PWRGD_VID

1

5

4

3

2

1546
DHM & DLM

6

1D2V_S0

VCC_IO_S0(1.05V)

CPUCORE_ON

Banias CPU needs 21A,

PWM MAX1546 ISL6218 CPU LDO CM2843 Phase 1 Power module Phase 2
so only one phase is needed.

The power system can separate two kinds of architecture for CPU. But the only difference between P4 and Banias CPU power architecture is VCC_COER_S0. Such as below :

d. P4 & Banias CPU VCC_CORE_S0 difference :

Слайд 26

By now we have learned how NB power is generated and

By now we have learned how NB power is generated and why
why it must be done in a specific sequence. You might start to wonder, “What is other Power application?” In the following section, I will show you the power consumption of all devices in a NB. You will learn:

2.1 Power budget block diagram
2.2 NB power application
2.3 Multi–power device

2. Power plan introduction :

Слайд 27

Create a NB power system with fixed procedure, so we can

Create a NB power system with fixed procedure, so we can know
know the power budget of all devices from the power plan procedure .

Design procedure :

a. Power budget :

b. Power application :

We must first know the power category and consumption of all devices, and then we can start to define the SPEC of power.

After power SPEC was defined, we need to confirm the timing & sequence when power is turned on. And separate them with S5,S3,S0, etc. for the purpose
of power saving.

2. Power plan introduction :(cont’d)

Слайд 28

1D25V_S0

VCC_CORE_S0(2.5mA )
1D5V_S0(599mA)
3D3V_S0(480mA )
1D5V_S5(90mA )
3D3V_S5( 166mA)
ICH4M

VCC_CORE
1D5V_S0(3140mA )
3D3V_S0(20mA )
2D5V_S3(2000mA )
2D5V_S0(50mA)
VCC_CORE(940mA )
Montara-GT
Mobile P4 CPU

3D3V_S3

VCC_CORE
(67.4A)-3.2G

1D25V_S0 VCC_CORE_S0(2.5mA ) 1D5V_S0(599mA) 3D3V_S0(480mA ) 1D5V_S5(90mA ) 3D3V_S5( 166mA) ICH4M VCC_CORE
Hz
1D2V_VID(190mA)

CLK GEN
ICS950813
360mA

CARDBUS&
1394
3D3V_S0(60mA)

CODEC
40mA

LPC SIO
50mA

LPCROM
6mA

DDR
2D5V_S3 (2150mA)
1D25V_S0 (2150mA)

KBC
7mA

~150mA

~2150mA

~190mA

PCMCIA
CARD
1000mA

2D5V_S3

~4150mA

~65400mA

Mini PCI
802.11/BT
660mA

1D25V_S0

VCC_CORE

1D2V_VID

3D3V_S3

3D3V_S5

2D5V_S3

3D3V_S5

~50mA

~7650mA

~166mA

3D3V_S0

5V_S0

CRT
0.5A

HDD
900mA

CD ROM
700mA

OP AMP
1A

TOUCHPAD
25mA

PCMCIA
CARD
1A

1394-PHY
71mA

2D5V_S0

FIR
600mA

LCD
200mA

~2984mA

1D2V_VID

1D5V_S0

~3739mA

FAN
0.5A

MS Card
200 mA
SD Card
200 mA

USB*4
2000mA

1D5V_S0

2D5V_S0

KBC
3D3V_S3(150mA)

LAN
3D3V_LAN_S5(150mA)

1D5V_S5

1D5V_S5

~90mA

3D3V_LAN_S5

FDD
0.8A

2.1 NB (Yuhina) Power Budget Block Diagram

Слайд 29

2.2.1 3D3V Device :

2.2 NB power application :

2.2.1 3D3V Device : 2.2 NB power application :

Слайд 30

2.2.3 2D5V Device :

2.2.2 5V Device :

2.2.3 2D5V Device : 2.2.2 5V Device :

Слайд 31

2.2.6 1D2V_VID Device :

2.2.5 1D25V Device :

2.2.7 VCC_CORE Device :

2.2.4 1D5V Device

2.2.6 1D2V_VID Device : 2.2.5 1D25V Device : 2.2.7 VCC_CORE Device : 2.2.4 1D5V Device :
:

Слайд 32

2.3 Multi-power device :

2.3 Multi-power device :

Слайд 33

No power means when the power button is pressed, the power

No power means when the power button is pressed, the power LED
LED is not turned on, and the system is not booted. We can separate no power in four kinds of states :

3.1 No power debug notice & sequence
3.2 No DCBATOUT or short to GND
3.3 S5 Power No Good
3.4 Power on logic No Good

No power define :

If power system is good & power LED turned on, but the system still N.G., it means the system is “No work”.
You must follow the “No work debugging” process to troubleshoot the problems.

3. No power troubleshooting

Слайд 34

3.1.1 debug Notice :

• For safety’s sake, please use adapter to supply

3.1.1 debug Notice : • For safety’s sake, please use adapter to
the
Notebook power when you execute the debug process .
• This debug procedure can only cover about 90% no power
Problems.

3.1.2 debug Sequence :

Check
Dcbatout short to GND
Symptom?
Ref : 3.2.1

Check
S5 power N.G
Symptom?
Ref : 3.3.1

Check
Power logic N.G
Symptom?
Ref.:3.4.1

Execute
DCbatout short to GND
Debugging
Ref : 3.2.2

Execute
S5 power N.G
Debugging
Ref : 3.3.2

Execute
Power logic N.G
Debugging
Ref : 3.4.2

Other
condition

No No No

Yes Yes Yes

3.1 No power debug notice & sequence :

Слайд 35

3.2.1 Symptoms:

• There is no any response when the power button was

3.2.1 Symptoms: • There is no any response when the power button
pressed and
adaptor was already inserted .
• Adaptor power LED flashes or shuts down .
Solution: Open the system case and use the multi-meter 200V scale to
check AD+ or DCBATOUT between GND as below . If the voltage is
less than 5V,we can make sure it is short to GND .

19V

3.2 DCBATOUT short to GND :

Слайд 36

• There are 6 kinds of power sources in the Yuhina system,

• There are 6 kinds of power sources in the Yuhina system,
so we must check all
of the power output to see if there is any short to GND.
Solution: Check the 5V_S3,3D3V_S5,2D5V_S3,1D5V_S0,VCC_CORE and charger power one by one .

PWM
MAX1645

Charger

P-MOS
SI4425
P-MOS
SI4425

PWM
MAX1999

PWM
MAX1715

N-MOS
FD9412

N-MOS
FD9412

N-MOS
FD9412

N-MOS
FD9412

3D3V_S5

N-MOS
FD9412

LDO
G913C

5V_S3

3D3V_S3

3D3V_S0

3D3V_LAN_S5

1D5V_S5

2D5V_S3

2D5V_S0

LDO
G913C

1D25V_S0

PWM
MAX1546

1D5V_S0

BT+

DCBATOUT

VCC_CORE_S0

5V_S0

1 of 2

3.2.2 Debugging :

Слайд 37

Following is an example of the 2D5V power source.
Use multi-meter 200Ω

Following is an example of the 2D5V power source. Use multi-meter 200Ω
scale to check TC32. The impedance must bigger
than 200Ω. If not, it means something short to GND, and we need to find out why.
Usually we would remove hi & low side MOS (U65 & U69) and MAX1715. If it’s still short to GND, it means some output devices are damaged, and we must try to remove them one by one .

DVM

1

2

2

1

2 of 2

3.2.2 Debugging : (cont’d)

Слайд 38


3.3.1 Symptoms:

• There is no any response when the power button

3.3.1 Symptoms: • There is no any response when the power button
was pressed and adaptor has already plugged-in.
Adaptor power LED is normal .

3.3.2 Debugging :

• Open the case, use multi-meter to check if MAX1999 pin18 5V_S5 power is good.
• If not, it means MAX1999 or some 5V_S5 devices are damaged. Remove all powers, use multi-meter to check MAX1999 pin18 Impedance .
• If the impedance is smaller than 200Ω, it means some 5V_S5 devices are damaged, and we must try to remove the component one by one.
• If the impedance is more than 200Ω, it means the MAX1999 have some problem, and it must be changed.

3.3 S5 Power No Good :

Слайд 39

• Next we must check 3D3V_S5. If 3D3V_DC_S5 is N.G, we could

• Next we must check 3D3V_S5. If 3D3V_DC_S5 is N.G, we could
use multi-meter to check MAX1999 pin20 (19V), pin17, 28, 3 (5V) if powers are all good. If N.G, please check the source component.

3.3.2 Debugging : (cont’d)

Слайд 40

3.4.1 Symptom :

• If the previous two symptoms are checked ok, but

3.4.1 Symptom : • If the previous two symptoms are checked ok,
the system still has no power on, then we should check the power on logic circuit as below .
When power button was pressed, PWRBTN# will be pulled low.
After a series of logic actions, the SHUTDOWN_S5 will also be
pulled low.

Lo

Hi

Hi

Hi

Hi

Hi

Lo

To MAX1999
ON3 3D3V

Power Button

1

1

2

2

1 of 2

3.4 Power on logic N.G :

Слайд 41

• If the power on logic circuit is correct, we can track

• If the power on logic circuit is correct, we can track
the south bridge trigger logic .
When the power button is pressed, PWRBTN# will be pulled low ,
After the logic action, the PWRBTN#_ICH will also be pulled low.
It will trigger south bridge to send PM_SLP_S4 & S3 signal to turn
on S3 & S0 power .

Lo

Lo

Lo

Hi

ICH4M
(South bridge )

PM_SLP_S4 & S3

1

1

2

2

3

3

2 of 2

3.4.1 Symptom :

Имя файла: Система-питания-ноутбука-.pptx
Количество просмотров: 185
Количество скачиваний: 0