Задачи по комбинаторике

Содержание

Слайд 2


Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число

Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число
всех возможных способов расположения некоторых предметов или число всех возможных способов осуществления некоторого действия. Разные пути или варианты, которые приходится выбирать человеку, складываются в самые разнообразные комбинации.

Введение

Слайд 3

Актуальность и значимость


Комбинаторные задачи развивают нестандартное мышление, воображение, смекалку.
Задачи по

Актуальность и значимость Комбинаторные задачи развивают нестандартное мышление, воображение, смекалку. Задачи по
комбинаторике включены на всех этапах математической олимпиады.

Слайд 4

проблема

цель

задачи

методы

проблема цель задачи методы

Слайд 5

Проблема

Отсутствие возможности хорошо подготовиться к конкурсам и к олимпиаде. (Недостаток времени ,

Проблема Отсутствие возможности хорошо подготовиться к конкурсам и к олимпиаде. (Недостаток времени
беден задачный материал )

Слайд 6

Цель работы:

выяснить, что значит решить комбинаторную задачу, т.е. познакомиться с методами решения

Цель работы: выяснить, что значит решить комбинаторную задачу, т.е. познакомиться с методами решения задач из комбинаторики.
задач из комбинаторики.

Слайд 7

Задачи исследования:

Рассмотреть методы решения некоторых комбинаторных задач;
Создать задачник по комбинаторике для 5-6

Задачи исследования: Рассмотреть методы решения некоторых комбинаторных задач; Создать задачник по комбинаторике
классов;
Расширить знания по теме «Комбинаторные задачи»;
Научиться собирать информацию, выделять главное, делать выводы.

Слайд 8

Объект исследования:
область математики – комбинаторика.

Методы исследования:
Классификация
Систематизация
Сравнение
Анализ математической литературы

Объект исследования: область математики – комбинаторика. Методы исследования: Классификация Систематизация Сравнение Анализ математической литературы

Слайд 9

Результат

Создание сборника задач

Результат Создание сборника задач

Слайд 10

Задача: На столе лежат 3 черных и 5 красных карандашей. Сколькими способами

Задача: На столе лежат 3 черных и 5 красных карандашей. Сколькими способами
можно выбрать карандаш любого цвета?
Решение: Выбрать карандаш любого цвета можно 5+3=8 способами.

Слайд 11

Задача: В классе 10 учащихся занимаются спортом, остальные 6 учащихся посещают танцевальный

Задача: В классе 10 учащихся занимаются спортом, остальные 6 учащихся посещают танцевальный
кружок. 1)Сколько пар учащихся можно выбрать так, чтобы один из пары был спортсменом, другой танцором? 2)Сколько возможностей выбора одного ученика?
Решение:
1)Возможность выбора спортсменов 10, а на каждого из 10 спортсменов выборов танцора 6. Значит, возможность выбора пар танцора и спортсмена 10·6=60.
2) Возможность выбора одного ученика 10+6=16.

Слайд 12

Задача : Из города А в город В ведут 3 дороги. А

Задача : Из города А в город В ведут 3 дороги. А
из города В в город С ведут 4 дороги. Сколько путей, проходящих через В, ведут из А в С?
Решение: Можно рассуждать таким образом: для каждой из трех путей из А в В имеется четыре способа выбора дороги из В в С. Всего различных путей из А в С равно произведению 3·4, т.е. 12

Слайд 13

Задача: В школьной столовой имеются 2 первых, 5 вторых и 4 третьих

Задача: В школьной столовой имеются 2 первых, 5 вторых и 4 третьих
блюд. Сколькими способами ученик может выбрать обед, состоящий из первых, вторых и третьих
Решение: Первое блюдо можно выбрать 2 способами. Для каждого выбора первого блюда существует 5 вторых блюд. Первые два блюда можно выбрать 2·5=10 способами. И, наконец, для каждой 10 этих выборов имеются четыре возможности выбора третьего блюда, т. е. Существует 2·5·4 способов составления обеда из трех блюд. Итак, обед может быть составлен 40 способами.

Слайд 14


Проказница Мартышка,
Осёл,
Козёл,
Да косолапый Квартет
Мишка
Затеяли играть в квартет

Стой, братцы стой! –
Кричит Мартышка,

Проказница Мартышка, Осёл, Козёл, Да косолапый Квартет Мишка Затеяли играть в квартет
- погодите!
Как музыке идти?
Ведь вы не так сидите…
И так, и этак пересаживались – опять музыка на лад не идет.
Вот пуще прежнего пошли у них разборы
И споры,
Кому и как сидеть…

Примеры задач

Слайд 15

Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов

Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов
не так уж и много. Сколько?
Решение:
4!=24 варианта перестановок.

Решение

Слайд 16

Сколько двузначных чисел можно составить, используя цифры 1,4,7.

Первая цифра
Вторая цифра
Можно составить 9

Сколько двузначных чисел можно составить, используя цифры 1,4,7. Первая цифра Вторая цифра
различных двузначных чисел. Эта задача решена с помощью дерева возможных вариантов.

1

4

7

1

4

7

1

4

7

1

4

7

Слайд 17

Вывод:

Научилась решать задачи по комбинаторике;
Подобрала задачи по данной теме и создала задачник;
Приобрела

Вывод: Научилась решать задачи по комбинаторике; Подобрала задачи по данной теме и
умения работать с компьютером.

Слайд 18

Я считаю, что работа достигла своих целей.
Создала сборник задач по комбинаторике
Этот сборник

Я считаю, что работа достигла своих целей. Создала сборник задач по комбинаторике
заинтересует учащихся, поможет развитию их кругозора и мышления, будет способствовать более качественной подготовке к конкурсам и к олимпиадам. Может быть использована на уроках, кружках, индивидуальных занятиях .

Заключение

Имя файла: Задачи-по-комбинаторике.pptx
Количество просмотров: 322
Количество скачиваний: 1