Содержание
- 2. Операторы В квантовой физике многие физические величины могут квантоваться, т.е. в некоторых случаях они принимают лишь
- 3. Операторы Оператор − это математический символ, определяющий совокупность действий, которые надо провести над заданной функцией U
- 4. Операторы Самосопряженный линейный оператор должен удовлетворять соотношению: − оператор, комплексно – сопряженный Операторы можно складывать, вычитать
- 5. Собственное значение оператора В ряде случаев воздействие оператора на некоторую функцию U(x) эквивалентно умножению этой функции
- 6. Собственное значение оператора В случае линейного дифференциального оператора уравнение является линейным дифференциальным уравнением. Известно, что такое
- 7. Дискретный спектр собственных значений оператора С примером дискретного спектра встречаемся, решая, например, задачу о движении частицы
- 8. Дискретный спектр собственных значений оператора при (0 ≤ x В точках x=0; x=a функция ψ обращается
- 9. Исходя из граничных условий Дискретный спектр собственных значений оператора найдем: A = 0; где n=1, 2,
- 10. Дискретный спектр собственных значений оператора
- 11. Гармонический осциллятор Любая система, совершающая гармонические колебания с малой амплитудой вблизи состояния устойчивого равновесия (атом в
- 12. Гармонический осциллятор Здесь x – отклонение частицы от положения равновесия; - упругая сила, возвращающая ее в
- 13. в вещественной форме имеет вид: Видим, что в указанных условиях частица совершает около положения равновесия гармонические
- 14. Гармонический осциллятор Модель гармонического осциллятора применима к любой системе, совершающей гармонические колебания с малой амплитудой вблизи
- 15. Гармонический осциллятор Полная энергия осциллятора в силовом поле, как отмечалось, равна: где Потенциальная энергия U связана
- 16. Гармонический осциллятор Интегрируя это соотношение, найдем U: Полагая С=0 (константа интегрирования в каждой конкретной задаче определяется
- 17. Гармонический осциллятор Состояние гармонического осциллятора с точки зрения квантовой теории характеризуется волновой функцией ψ, удовлетворяющей уравнению
- 18. Гармонический осциллятор Решение этого уравнения хорошо исследовано. Оно является конечным и однозначным (как отмечалось, волновая функция
- 19. Гармонический осциллятор Так, энергия гармонического осциллятора, находящегося в поле потенциальных сил, может принимать только дискретные значения
- 21. Скачать презентацию


















Изучение явления электромагнитной индукции
Волновые явления. Занимательная физика. 4 класс
Презентация на тему Примеры потребления электроэнергии
Элементы гидроаэромеханики
Динамика точки. Лекция 4
Наноинженерия
Температура, способы ее измерения, температурные шкалы
Магнитное_поле_в_вакууме
Система питания инжекторного двигателя. Система распределенного впрыска LН-Getronic
Интерференция света
Расчет статических нагрузок тела под собственным весом
Телескопи. Типи телескопів за розташуванням
Сравнение количеств теплоты при смешивании воды разной температуры. Лабораторная работа № 1
Закон преломления света
Линзы
Lektsia_8_Kolebania_ZS
Тематический состав ВсОШ по физике для 11ого класса
Открытие и наблюдение элементарных частиц
4
Модели строения атома
Хроматическая аберрация. (Лекция 33)
Аристотель, его вклад в развитие механики
Тезаурус по атомной энергетике
Электроосветительные приборы. Лампы накаливания и регулировка освещенности
Отражение звука, звуковой резонанс
Двойной электрон-ядерный резонанс. Введение в теорию кристаллического поля
Гамма излучение
Цепи периодического несинусоидального тока