Презентация на тему Электромагнитная индукция

Содержание

Слайд 2

Цель: повторение основных понятий, законов и формул ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ в соответствии с

Цель: повторение основных понятий, законов и формул ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ в соответствии с
кодификатором ЕГЭ.

Элементы содержания, проверяемые на ЕГЭ 2010:
Явление электромагнитной индукции
Магнитный поток
Закон электромагнитной индукции Фарадея
Правило Ленца
Самоиндукция
Индуктивность
Энергия магнитного поля

Слайд 3

Явление электромагнитной индукции

Явление электромагнитной индукции:
заключается в возникновении электрического тока в замкнутом

Явление электромагнитной индукции Явление электромагнитной индукции: заключается в возникновении электрического тока в
проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Слайд 4

Магнитный поток

Магнитным потоком Φ через площадь S контура называют величину
Φ =

Магнитный поток Магнитным потоком Φ через площадь S контура называют величину Φ
B · S · cos α
где B – модуль вектора магнитной индукции,
α – угол между вектором и нормалью к плоскости контура
Единица магнитного потока в системе СИ называется вебером (Вб)

Слайд 5

Закон электромагнитной индукции Фарадея

Правило Ленца:
При изменении магнитного потока в проводящем контуре

Закон электромагнитной индукции Фарадея Правило Ленца: При изменении магнитного потока в проводящем
возникает ЭДС индукции Eинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

В этом примере а инд < 0. Индукционный ток Iинд течет навстречу выбранному положительному направлению обхода контура.

Слайд 6

Закон электромагнитной индукции Фарадея

εинд и всегда имеют противоположные знаки (знак «минус» в

Закон электромагнитной индукции Фарадея εинд и всегда имеют противоположные знаки (знак «минус»
формуле Фарадея)
Физический смысл правила Ленца:
– оно выражает закон сохранения энергии.

Слайд 7

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

1. Магнитный

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам: 1.
поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле.

2. Изменение во времени магнитного поля при неподвижном контуре.

Слайд 8

Самоиндукция. Индуктивность

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток,

Самоиндукция. Индуктивность Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный
вызывающий ЭДС индукции, создается током в самом контуре.
Единица индуктивности в СИ называется генри (Гн).
1 Гн = 1 Вб / 1 А

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:
Φ = LI
Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки.

Магнитная энергия катушки.
При размыкании ключа K
лампа ярко вспыхивает.

Слайд 9

Энергия магнитного поля

Энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током

Энергия магнитного поля Энергия Wм магнитного поля катушки с индуктивностью L, создаваемого
I, равна

Вычисление энергии магнитного поля

Слайд 10

Рассмотрим задачи:

ЕГЭ 2001-2010 (Демо, КИМ)
ГИА-9 2008-2010 (Демо)

Рассмотрим задачи: ЕГЭ 2001-2010 (Демо, КИМ) ГИА-9 2008-2010 (Демо)

Слайд 11

ГИА 2008 г. 11. При внесении южного полюса магнита в катушку амперметр

ГИА 2008 г. 11. При внесении южного полюса магнита в катушку амперметр
фиксирует возникновение индукционного тока. Что необходимо сделать, чтобы увеличить силу индукционного тока?

увеличить скорость внесения магнита
вносить в катушку магнит северным полюсом
изменить полярность подключения амперметра
взять амперметр с меньшей ценой деления

Слайд 12

(ГИА 2009 г.) 11. Две одинаковые катушки А и Б замкнуты каждая

(ГИА 2009 г.) 11. Две одинаковые катушки А и Б замкнуты каждая
на свой гальванометр. В катушку А вносят полосовой магнит, а из катушки Б вынимают такой же полосовой магнит. В каких катушках гальванометр зафиксирует индукционный ток?

ни в одной из
в обеих катушках
только в катушке А
только в катушке

Слайд 13

(ЕГЭ 2001 г.) А20. Виток провода находится в магнитном поле и своими

(ЕГЭ 2001 г.) А20. Виток провода находится в магнитном поле и своими
концами замкнут на амперметр. Значение магнитной индукции поля меняется с течением времени согласно графику на рисунке. В какой промежуток времени амперметр покажет наличие электрического тока в витке?

от 0 с до 1 с
от 1 с до 3 с
от 3 с до 4 с
во все промежутки времени от 0 с до 4 с

Слайд 14

(ЕГЭ 2001 г., Демо) 21. Ток в катушке меняется согласно графику на

(ЕГЭ 2001 г., Демо) 21. Ток в катушке меняется согласно графику на
рисунке. В какие промежутки времени около торца катушки можно обнаружить не только магнитное, но и электрическое поле ?

От 0 до 2 с и от 5 до 7 с.
Только от 0 до 2 с.
Только от 2 до 5 с.
Во все указанные промежутки времени.

Слайд 15

(ЕГЭ 2002 г., Демо) А19. В металлическое кольцо в течение первых двух

(ЕГЭ 2002 г., Демо) А19. В металлическое кольцо в течение первых двух
секунд вдвигают магнит, в течение следующих двух секунд магнит оставляют неподвижным внутри кольца, в течение последующих двух секунд его вынимают из кольца. В какие промежутки времени в катушке течет ток?

0–6 с
0–2 с и 4–6 с
2–4 с
только 0–2 с

Слайд 16

(ЕГЭ 2004 г., демо) А15. Постоянный магнит вводят в замкнутое алюминиевое кольцо

(ЕГЭ 2004 г., демо) А15. Постоянный магнит вводят в замкнутое алюминиевое кольцо
на тонком длинном подвесе (см. рисунок). Первый раз – северным полюсом, второй раз – южным полюсом. При этом

в обоих опытах кольцо отталкивается от магнита
в обоих опытах кольцо притягивается к магниту
в первом опыте кольцо отталкивается от магнита, во втором – кольцо притягивается к магниту
в первом опыте кольцо притягивается к магниту, во втором – кольцо отталкивается от магнита

Слайд 17

(ЕГЭ 2005 г., ДЕМО) А19. Виток провода находится в магнитном поле, перпендикулярном

(ЕГЭ 2005 г., ДЕМО) А19. Виток провода находится в магнитном поле, перпендикулярном
плоскости витка, и своими концами замкнут на амперметр. Магнитная индукция поля меняется с течением времени согласно графику на рисунке. В какой промежуток времени амперметр покажет наличие электрического тока в витке?

от 0 с до 1 с
от 1 с до 3 с
от 3 с до 4 с
во все промежутки времени от 0 с до 4 с

Слайд 18

(ЕГЭ 2006 г., ДЕМО) А19. На рисунке приведена демонстрация опыта по проверке

(ЕГЭ 2006 г., ДЕМО) А19. На рисунке приведена демонстрация опыта по проверке
правила Ленца. Опыт проводится со сплошным кольцом, а не разрезанным, потому что

сплошное кольцо сделано из стали, а разрезанное – из алюминия
в сплошном кольце не возникает вихревое электрическое поле, а в разрезанном – возникает
в сплошном кольце возникает индукционный ток, а в разрезанном – нет
в сплошном кольце возникает ЭДС индукции, а в разрезанном – нет

Слайд 19

(ЕГЭ 2007 г., ДЕМО) А23. На рисунке показаны два способа вращения рамки

(ЕГЭ 2007 г., ДЕМО) А23. На рисунке показаны два способа вращения рамки
в однородном магнитном поле. Ток в рамке

возникает в обоих случаях
не возникает ни в одном из случаев
возникает только в первом случае
возникает только во втором случае

Слайд 20

(ЕГЭ 2008 г., ДЕМО) А20. Сравните индуктивности L1 и L2 двух катушек,

(ЕГЭ 2008 г., ДЕМО) А20. Сравните индуктивности L1 и L2 двух катушек,
если при одинаковой силе тока энергия магнитного поля, создаваемого током в первой катушке, в 9 раз больше, чем энергия магнитного поля, создаваемого током во второй катушке.

L1 в 9 раз больше, чем L2
L1 в 9 раз меньше, чем L2
L1 в 3 раза больше, чем L2
L1 в 3 раза меньше, чем L2

Слайд 21

(ЕГЭ 2010 г., ДЕМО) А15. На рисунке изображен момент демонстрационного эксперимента по

(ЕГЭ 2010 г., ДЕМО) А15. На рисунке изображен момент демонстрационного эксперимента по
проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится внутри сплошного металлического кольца, но не касается его. Коромысло с металлическими кольцами может свободно вращаться вокруг вертикальной опоры. При выдвижении магнита из кольца оно будет

оставаться неподвижным
двигаться против часовой стрелки
совершать колебания
перемещаться вслед за магнитом