Логарифмы и их свойства

Слайд 2

Логарифм числа

 

Логарифм числа

Слайд 3

Основное логарифмическое тождество

 

Основное логарифмическое тождество

Слайд 4

Основные свойства логарифмов

При любом a > 0 (a ≠ 1) и любых

Основные свойства логарифмов При любом a > 0 (a ≠ 1) и
положительных x и y выполнены равенства:
loga 1 = 0.
loga a = 1.
loga xy = loga x + loga y.
loga = loga x - loga y.
loga xp = p loga x
для любого действительного p.

Слайд 5

Десятичный логарифм

Наиболее употребительными на практике являются десятичные логарифмы, когда в качестве основания

Десятичный логарифм Наиболее употребительными на практике являются десятичные логарифмы, когда в качестве
берется число 10, и натуральный логарифм, когда в качестве основания берется число e ≈ 2,7.
Десятичный логарифм числа b обозначается lg b
Натуральный логарифм обозначается ln b

Слайд 6

Примеры вычисления десятичных логарифмов

lg 1 = 0, так как 1 = 100
lg

Примеры вычисления десятичных логарифмов lg 1 = 0, так как 1 =
10 = 1 , так как 10 = 101
lg 100 = 2, так как 100 = 102
lg 0,1 = -1, так как 0,1 = 10-1
lg 0,01 = -2, так как 0,01 = 10-2
lg 0,001 = -3, так как 0,001 = 10-3
Имя файла: Логарифмы-и-их-свойства.pptx
Количество просмотров: 48
Количество скачиваний: 0