Наслідки з аксіом стереометрії

Содержание

Слайд 2

Наслідок 1

а

А

а

А

Через пряму a і точку А, проведено ЄДИНУ можливу площину.
Доведемо.

Наслідок 1 а А а А Через пряму a і точку А,
Будь-які дві точки даної прямої (В і С) разом з даною точкою (А) утворюють три точки, що не лежать на одній прямій. За аксіомою 2, через них проходить площина і до того ж тільки одна. За аксіомою 3, дана пряма лежить у цій площині.

С

В

α

Через пряму і точку, що не лежить на ній, можна провести площину і до того ж тільки одну.

Слайд 3

Наслідок 2

Через дві прямі, що перетинаються, можна провести площину, і до того

Наслідок 2 Через дві прямі, що перетинаються, можна провести площину, і до
ж тільки одну.

а

b

Через прямі а та b проведено ЄДИНУ можливу площину.
Доведемо. Якщо на кожній з даних прямих взяти по одній точці, відмінній від точки перетину даних прямих, та точку перетину (мал. 44), то утвориться три точки, що не лежать на одній прямій. За аксіомою 2, через них проходить площина і до того ж тільки одна. За аксіомою 3, кожна з даних прямих лежить у цій площині.

α

А

В

С

Слайд 4

Способи задання площини

1. Через три точки, що не лежать на одній прямій

2.

Способи задання площини 1. Через три точки, що не лежать на одній
Через пряму точку, що не належить їй

3. Через дві перетинаючі прямі.

А1

Висновок

Слайд 5

Прочитати малюнок

A

С

Прочитати малюнок A С

Слайд 6

Прочитати малюнок

B

c

b

a

Прочитати малюнок B c b a

Слайд 7

Прочитати малюнок

Прочитати малюнок

Слайд 8

Користуючись заданим малюнком, назвіть:
а) чотири точки, що належать площині SAB, площині

Користуючись заданим малюнком, назвіть: а) чотири точки, що належать площині SAB, площині
АВС;
б) площину, якій належить пряма MN, пряма КМ;
в) пряму, по котрій перетинаються площини ASC і SBC , площини SAC і CAB.

Слайд 9

Користуючись заданим малюнком, назвіть:
а) дві площини, що містять пряму DE ,

Користуючись заданим малюнком, назвіть: а) дві площини, що містять пряму DE ,
пряму EF
б) пряму, по котрій перетинаються площини DEF і SBC;
площинии FDE і SAC ;
в) дві площини, які перетинає пряма SB; пряма AC .

Слайд 10


Користуючись заданим малюнком, назвіть:
а) три площини, що містять пряму

Користуючись заданим малюнком, назвіть: а) три площини, що містять пряму В1С; пряму АВ1;
В1С; пряму АВ1;

Слайд 11

А

А1

В

В1

С

D1

D

C1

а)

В1С

?

А А1 В В1 С D1 D C1 а) В1С ?

Слайд 12

А

А1

В

В1

С

D1

D

C1

а)

В1С

?

А А1 В В1 С D1 D C1 а) В1С ?

Слайд 13

Користуючись заданим малюнком, назвіть:
б) пряму, по якій перетинаються площини

Користуючись заданим малюнком, назвіть: б) пряму, по якій перетинаються площини B1CD і
B1CD і AA1D1 ;
площини ADC1 і A1B1B ;

C1

C

Слайд 14

А

А1

В

В1

С

D1

D

C1

б)

А А1 В В1 С D1 D C1 б)

Слайд 15

Користуючись заданим малюнком, назвіть:
в) площину, що не преринає пряму CD1

Користуючись заданим малюнком, назвіть: в) площину, що не преринає пряму CD1 ; пряму BC1
; пряму BC1

Слайд 16

А

А1

В

В1

С

D1

D

C1

в)

А А1 В В1 С D1 D C1 в)

Слайд 17

1 За даними на малюнках 49, 50 з’ясуйте:
1) які спільні точки мають

1 За даними на малюнках 49, 50 з’ясуйте: 1) які спільні точки
площини α і β;
2) по якій прямій перетинаються площини α і β.

Тренувальні усні вправи

Слайд 18

Задача №2

Точки A,B,C,D належать площині α. Точки M, N знаходяться поза площиною.
Чи

Задача №2 Точки A,B,C,D належать площині α. Точки M, N знаходяться поза
існують площини :
AN;
ADB;
3) BCDM;
4) ACD;
5) BAC;
6) CNBD;
7) DABC;
8) MNC;
9) CAD:

А

B

C

D

M

N

α

Слайд 19

Пряма а і точка А лежать у площині α. Точки B та

Пряма а і точка А лежать у площині α. Точки B та
C не лежать у даній площині.
Чи визначають площину, відмінну від площини α:
пряма а і точка B;
пряма а і точка C;
прямі AB і AC;
прямі AB і BC;

Задача № 3

С

B

A

a

α

Слайд 20

Задача № 4

Задача № 4

Слайд 21

77. Чому штативи багатьох приладів (фотоапарата, теодоліта тощо) виготовляють у формі триноги?

Задачі

77. Чому штативи багатьох приладів (фотоапарата, теодоліта тощо) виготовляють у формі триноги?
практичного змісту

Теодоліт - інструмент, який використовується для вимірювання горизонтальних і вертикальних кутів. Теодоліт складається з телескопа, встановленого на тринозі, яка обертається навколо вертикальної осі.

Слайд 22

Теодоліт.
Теодоліт - топографічний інструмент, служить для точного вимірювання кутів між різними точками,

Теодоліт. Теодоліт - топографічний інструмент, служить для точного вимірювання кутів між різними
для чого проводиться їх зйомка в трьох вимірах.

Слайд 23

78. Щоб перевірити, чи є дана поверхня плоскою, до неї прикладають лінійку

78. Щоб перевірити, чи є дана поверхня плоскою, до неї прикладають лінійку
в різних напрямах. Край лінійки, дотикаючись до поверхні у двох точках, повинен повністю лежати в ній. На чому ґрунтується така перевірка?
79. Перевіряючи, чи лежать кінці чотирьох ніжок стільця в одній площині, тесля користується двома нитками. Як він робить це?

Слайд 24

Аксіоми стереометрії в побуті, будівництві

Триніжка для стійок.

Тринога для
лазерних рівнів

Тринога кострова

Пюпітр

Аксіоми стереометрії в побуті, будівництві Триніжка для стійок. Тринога для лазерних рівнів Тринога кострова Пюпітр
Имя файла: Наслідки-з-аксіом-стереометрії.pptx
Количество просмотров: 35
Количество скачиваний: 0