Тригонометрические тождества

Содержание

Слайд 2

формирование понятия тождества,
умения доказывать тождества
упрощать тригонометрические выражения с использованием изученных формул.

Цели

формирование понятия тождества, умения доказывать тождества упрощать тригонометрические выражения с использованием изученных формул. Цели занятия:
занятия:

Слайд 3

Тождеством называется равенство, справедливое при всех допустимых значениях входящих в него букв.
Допустимые

Тождеством называется равенство, справедливое при всех допустимых значениях входящих в него букв.
значения букв – это значения, которые могут принимать буквы в данном выражении.
Выражения, находящиеся в левой и правой частях тождества, называются тождественными.
Замена некоторого выражения другим, ему тождественным, называется тождественным преобразованием данного выражения

Слайд 4

Основные тригонометрические тождества

Основные тригонометрические тождества

Слайд 5

а) 1 – sin2 x = cos2 x
б) cos2 β –

а) 1 – sin2 x = cos2 x б) cos2 β –
1 = – sin2 β
в) tg x ∙ ctg x + 4 = 5
г) cos α ∙ tg α = sin α
д) (1 – cos x)(1 + cos x) = 1 – cos2 x = sin2 x
е) sin2 α + 2sin α ∙ cos α + cos2 α = (sin α + cos α)2
2. Выразите через sin2α:
a) (1 – cos2 α) + sin2 α = 2sin2 α
б)
3) Выразите через tg α:
a) б)

Упростите выражение:

Слайд 6

- преобразование правой части к левой;
- преобразование левой части к правой;
- установление

- преобразование правой части к левой; - преобразование левой части к правой;
того, что разность между правой и левой частями
равна нулю;
- преобразование левой и правой части к одному и тому же выражению.

Способы доказательства тождеств:

Слайд 7

Задача 1

Доказать

Задача 1 Доказать

Слайд 8

Задача 1. Способ 1.

Доказать

Докажем, что разность левой и правой части равны 0.

Задача 1. Способ 1. Доказать Докажем, что разность левой и правой части равны 0.

Слайд 9

Задача 1. Способ 2.

Доказать

Преобразование левой части так, чтобы она равнялась правой

Задача 1. Способ 2. Доказать Преобразование левой части так, чтобы она равнялась правой

Слайд 10

Задача 1. Способ 3.

Доказать

Докажем, что разность левой и правой части равны 0.

Задача 1. Способ 3. Доказать Докажем, что разность левой и правой части равны 0.

Слайд 11

Доказать тожденство

А)

Б)

Доказать тожденство А) Б)

Слайд 13

Подведем предварительные итоги

Подведем предварительные итоги

Слайд 15

1. Докажем, что разность левой и правой части равны 0.

2. Преобразование левой

1. Докажем, что разность левой и правой части равны 0. 2. Преобразование
части так, чтобы она равнялась правой.

3. Преобразование правой части так, чтобы она равнялась левой.

4. Левую и правую часть преобразуем к одному выражению.

Слайд 16

- Пришло время подвести итоги работы. Продолжите фразу:
«Сегодня на уроке я

- Пришло время подвести итоги работы. Продолжите фразу: «Сегодня на уроке я
повторил…»
«Сегодня на уроке я узнал…»
«Сегодня на уроке я научился…»
«Сегодня на уроке я закрепил…»

Рефлексия

Слайд 17

Ермаков В.П.

«В математике следует помнить не формулы, а процессы мышления».

Ермаков В.П. «В математике следует помнить не формулы, а процессы мышления».
Имя файла: Тригонометрические-тождества.pptx
Количество просмотров: 83
Количество скачиваний: 3