Наследственные болезни крови

Содержание

Слайд 2

Наследственные болезни крови представляют собой один из важнейших разделов общей клинической гематологии.

Наследственные болезни крови представляют собой один из важнейших разделов общей клинической гематологии.
К ним, в первую очередь, относятся гемоглобинопатии, анемии, нарушения системы свертывания крови и тромбофилии

Слайд 3

Важнейшее практическое значение в медицине имеет учение о группах крови. В связи

Важнейшее практическое значение в медицине имеет учение о группах крови. В связи
с этим сначала рассмотрим наследование основных групп крови АВ0 и резус-фактора Rh

Слайд 4

Группы крови АВ0 (АВН) и резус-фактор Rh

Группы крови АВ0 (АВН) и резус-фактор Rh

Слайд 5

Феномен изогемагглютинации заключается в способности сыворотки крови одних людей агглютинировать или склеивать

Феномен изогемагглютинации заключается в способности сыворотки крови одних людей агглютинировать или склеивать
эритроциты других людей. В основе этого процесса лежит связывание эритроцитарных гликосфинголипидных антигенов, или агглютиногенов, с природными антителами плазмы крови – агглютининами

Слайд 6

Связывание эритроцитов происходит в том случае, если встречаются одноименные агглютиноген и агглютинин.

Связывание эритроцитов происходит в том случае, если встречаются одноименные агглютиноген и агглютинин.
В настоящее время описано 15 антигенных систем эритроцитов, каждая из которых включает от двух до нескольких десятков антигенов, контролируемых генами с множественными аллелями

Слайд 7

Наиболее известными из них являются группы крови системы АВ0, или ABH. В

Наиболее известными из них являются группы крови системы АВ0, или ABH. В
этой системе агглютиногенами являются антигены А, В и Н, а агглютининами — антитела α и β

Слайд 8

Антиген Н является предшественником для образования антигенов А и В. В том

Антиген Н является предшественником для образования антигенов А и В. В том
случае, если к антигену Н с помощью фермента гликозилтрансферазы присоединяется N-ацетилгалактозамин, образуется антиген А, если же присоединяется галактоза, образуется антиген В

Слайд 9

Гликозилтрансфераза кодируется геном AB0, в котором идентифицированы 3 главных аллеля: A, B

Гликозилтрансфераза кодируется геном AB0, в котором идентифицированы 3 главных аллеля: A, B
и 0. Аллели A и B кодируют изоформы фермента, пришивающие разные углеводные остатки к предшественнику Н

Слайд 10

Аллель 0 — это делеция 1 нуклеотида в гене AB0, при которой

Аллель 0 — это делеция 1 нуклеотида в гене AB0, при которой
фермент не синтезируется, и у нулевых гомозигот образуется только предшественник Н. Аллели A и B доминантны по отношению к аллелю 0 и кодоминантны по отношению друг к другу

Слайд 11

Наследование групп крови по системе AB0

Наследование групп крови по системе AB0

Слайд 12

При этом всего могут образовываться 4 группы крови: I, или 0 при

При этом всего могут образовываться 4 группы крови: I, или 0 при
генотипе 00; II, или A при генотипах AA и A0; III, или B при генотипах BB и B0; IV, или AB при генотипе AB

Слайд 13

Группы крови определяют иммунологические свойства агглютиногена, локализованного на поверхности эритроцитов, и взаимодействующего

Группы крови определяют иммунологические свойства агглютиногена, локализованного на поверхности эритроцитов, и взаимодействующего
с ними агглютинина, растворенного в сыворотке крови

Слайд 14

Взаимодействия между генотипами и фенотипами по системе групп крови АВ0

Группа

Взаимодействия между генотипами и фенотипами по системе групп крови АВ0 Группа Генотип
Генотип Антигены Антитела
крови эритроцитов сыворотки
I, или 0 00 0 αβ – анти-А
и анти-В
II, или А AA или A0 А β – анти-В
III, или В BB или BO В α – анти-А
IV, или АВ AB АВ 0

Слайд 15

Первая, или нулевая группа крови встречается в различных популяциях с частотой от

Первая, или нулевая группа крови встречается в различных популяциях с частотой от
30 до 40-50%. Кровь I группы не содержит эритроцитарных антигенов. Поэтому люди с первой, или нулевой группой крови являются «универсальными донорами»

Слайд 16

Введениe антигенов А или В лицам с нулевой группой крови приводит к

Введениe антигенов А или В лицам с нулевой группой крови приводит к
образованию антител, вызывающих агглютинацию эритроцитов с возможным развитием гемолитического шока

Слайд 17

Вторая группа крови, или А встречается среди населения примерно с такой же

Вторая группа крови, или А встречается среди населения примерно с такой же
частотой, что и первая, в то время как третья группа, или В является более редкой – 10-20%. У обладателей второй или третьей групп крови вырабатываются антитела соответственно либо против антигена В, либо против антигена А

Слайд 18

Четвертая группа крови, или АВ является самой редкой – 3-8%. У лиц

Четвертая группа крови, или АВ является самой редкой – 3-8%. У лиц
с такой группой крови антитела против эритроцитарных антигенов в сыворотке крови не вырабатываются, таким образом, они являются «универсальными реципиентами». Им можно переливать кровь любой группы, однако их эритроцитарную массу можно переливать людям только с той же самой четвертой группой крови

Слайд 19

Установлено, что эритроцитарные антигены могут существовать в различных вариантах – А1, А2,

Установлено, что эритроцитарные антигены могут существовать в различных вариантах – А1, А2,
А3, …, В1, В2, В3 и т.д. Эти варианты встречаются достаточно редко и не всегда выявляются, что может привести к ошибочному определению групп крови

Слайд 20

Поэтому во избежание посттрансфузионных осложнений в настоящее время по жизненным показаниям разрешено

Поэтому во избежание посттрансфузионных осложнений в настоящее время по жизненным показаниям разрешено
переливание донорской крови только той же самой группы, что и у реципиента

Слайд 21

Другая система групповых антигенов, названная системой резус-фактора (Rh), находится под более сложным

Другая система групповых антигенов, названная системой резус-фактора (Rh), находится под более сложным
генетическим контролем. Она включает три пары антигенов (D, C/c, E/e), кодируемые двумя тесно сцепленными высоко гомологичными генами – RHD и RHCE

Слайд 22

Основная роль в Rh-системе принадлежит антигену D, продукту гена RHD. При его

Основная роль в Rh-системе принадлежит антигену D, продукту гена RHD. При его
наличии кровь является резус-положительной. Резус-отрицательный фенотип формируется при отсутствии антигена D, обусловленном делецией гена RHD

Слайд 23

От 0,2% до 1% людей имеют особый, «слабый» вариант антигена D, обозначаемый

От 0,2% до 1% людей имеют особый, «слабый» вариант антигена D, обозначаемый
Du. Причиной появления этого фенотипа являются мутации в гене RHD. Носители Du-фенотипа также являются резус-отрицательными, им можно переливать только резус-отрицательную кровь

Слайд 24

Антигены C/c и E/e кодируются геном RHCE и образуются в результате альтернативного

Антигены C/c и E/e кодируются геном RHCE и образуются в результате альтернативного
сплайсинга. Доля лиц с резус-положительной принадлежностью – Rh(+) – составляет 85%, остальные 15% - являются "резус-отрицательными" – Rh(-)

Слайд 25

Знание групповой принадлежности по Rh-системе имеет определяющее значение для предотвращения резус-конфликта между

Знание групповой принадлежности по Rh-системе имеет определяющее значение для предотвращения резус-конфликта между
матерью и плодом, который может возникнуть во время беременности

Слайд 26

Если у резус-отрицательной женщины муж имеет резус-положительную принадлежность, то с высокой вероятностью

Если у резус-отрицательной женщины муж имеет резус-положительную принадлежность, то с высокой вероятностью
ребенок окажется резус-положительный, и тогда может возникнуть резус-конфликт между плодом и матерью

Слайд 27

В 15% подобных случаев после 7 недели беременности, когда в крови плода

В 15% подобных случаев после 7 недели беременности, когда в крови плода
появляются зрелые эритроциты, в крови матери с Rh(-) начинают вырабатываться специфические противорезусные антитела

Слайд 28

Через плаценту они попадают в кровь плода и в отдельных случаях могут

Через плаценту они попадают в кровь плода и в отдельных случаях могут
там накапливаться, вызывая агглютинацию эритроцитов и их разрушение. Как правило, первая беременность заканчивается благополучно, мертворождения и выкидыши встречаются редко

Слайд 29

Особенно велика вероятность возникновения резус-конфликта при повторных беременностях. Во время родов или

Особенно велика вероятность возникновения резус-конфликта при повторных беременностях. Во время родов или
медицинском аборте кровь плода может попадать в кровоток матери, и резус-отрицательная мать будет сенсибилизирована к резус-положительным антигенам ребенка

Слайд 30

При последующих беременностях резус-несовместимым плодом титр анти-Rh-антител в крови женщины резко возрастает.

При последующих беременностях резус-несовместимым плодом титр анти-Rh-антител в крови женщины резко возрастает.
Следствием этого процесса является разрушение красных кровяных телец плода и формирование у него желтухи новорожденного, сопровождающейся анемией, отеками, нарушениями слуха и речи, двигательными расстройствами

Слайд 31

При такой желтухе имеется риск формирования билирубиновой энцефалопатии, наиболее тяжелым исходом которой

При такой желтухе имеется риск формирования билирубиновой энцефалопатии, наиболее тяжелым исходом которой
является детский церебральный паралич с эпилептическим синдромом и значительным отставанием психического развития ребенка

Слайд 32

Степень поражения ЦНС и других органов зависит от уровня непрямого билирубина, поступающего

Степень поражения ЦНС и других органов зависит от уровня непрямого билирубина, поступающего
в кровь из разрушенных эритроцитов, и длительности гипербилирубинемии

Слайд 33

Наиболее эффективным средством лечения гемолитической болезни новорожденных является обменное переливание крови в

Наиболее эффективным средством лечения гемолитической болезни новорожденных является обменное переливание крови в
первые сутки жизни, а иногда и внутриутробно, способствующее удалению продуктов гемолиза и резусных антител матери из крови ребенка

Слайд 34

Для профилактики резус-конфликта и гемолитической болезни у плода женщине с отрицательной резус-принадлежностью

Для профилактики резус-конфликта и гемолитической болезни у плода женщине с отрицательной резус-принадлежностью
при любом внутриматочном вмешательстве во время первой беременности показано введение анти-D-иммуноглобулина. Этот препарат снижает резус-сенсибилизацию беременной, то есть её чувствительность к резус-фактору и формированию резусных антител

Слайд 35

Введение анти-D-иммуноглобулина при повторных беременностях не показано, так как женщина уже сенсибилизирована,

Введение анти-D-иммуноглобулина при повторных беременностях не показано, так как женщина уже сенсибилизирована,
то есть чувствительна к резус-фактору и имеет резусные антитела

Слайд 36

Гемоглобинопатии

Гемоглобинопатии

Слайд 37

Гемоглобинопатии — это гетерогенная группа наследственных заболеваний, обусловленных мутациями в глобиновых генах.

Гемоглобинопатии — это гетерогенная группа наследственных заболеваний, обусловленных мутациями в глобиновых генах.
В организме человека гемоглобин находится в различных изоформах, каждая из которых состоит из четырех полипептидных цепей

Слайд 38

98% гемоглобина взрослого человека представлено изоформой HbA, или гемоглобином А, в состав

98% гемоглобина взрослого человека представлено изоформой HbA, или гемоглобином А, в состав
которого входят две α- и две β-цепи. Его формула записывается как HbA(α2; β2). От 2 до 2,5% приходится на долю гемоглобина HbA 2,в котором β-цепь заменена на δ-цепь – HbA2(α2; δ2)

Слайд 39

В первой половине беременности у плода присутствуют необычные формы эмбрионального гемоглобина HbCower2 (α2;

В первой половине беременности у плода присутствуют необычные формы эмбрионального гемоглобина HbCower2
ε2) который в постнатальном периоде не обнаруживается. Во второй половине внутриутробного развития преобладающим у плода является фетальный гемоглобин HbF(α2; γ2), в котором β-цепь заменена на γ-цепь

Слайд 40

В течение первого года жизни ребенка происходит замена фетального гемоглобина на гемоглобин

В течение первого года жизни ребенка происходит замена фетального гемоглобина на гемоглобин
А, и у взрослых фетальный гемоглобин составляет не более 0,1-2%

Слайд 41

Гены различных цепей гемоглобина кластерированы в двух различных цитогенетических областях и являются

Гены различных цепей гемоглобина кластерированы в двух различных цитогенетических областях и являются
классическим примером генных семейств, содержащих псевдогены. Альфа-цепь кодируется двумя дуплицированными генами HBA1 и HBA2, расположенными в области 16pter-p13.3

Слайд 42

Продукты этих генов идентичны друг другу, но характер их экспрессии различен. Ген

Продукты этих генов идентичны друг другу, но характер их экспрессии различен. Ген
HBA2 экспрессируется значительно интенсивнее гена HBA1. В непосредственной близости от гена HBA2 расположены 2 псевдогена HBAP1

Слайд 43

Остальные цепи гемоглобина (β, δ, γ и ξ) кодируются соответственно генами HBB,

Остальные цепи гемоглобина (β, δ, γ и ξ) кодируются соответственно генами HBB,
HBD, HBG1, HBG2 (2 гена для γ-цепи) и HBE1, расположенными в области 11p15.5

Слайд 45

Порядок локализации генов на хромосоме соответствует последовательности их экспрессии в онтогенезе, что

Порядок локализации генов на хромосоме соответствует последовательности их экспрессии в онтогенезе, что
ясно указывает на существование единой регуляторной системы для всего этого кластера генов

Слайд 46

При снижении экспрессии одного из генов кластера, компенсаторно повышается экспрессия других генов,

При снижении экспрессии одного из генов кластера, компенсаторно повышается экспрессия других генов,
и образуются гемоглобины, не свойственные соответствующему периоду развития

Слайд 47

В настоящее время описано большое количество мутаций в различных генах гемоглобинов, которые

В настоящее время описано большое количество мутаций в различных генах гемоглобинов, которые
приводят к развитию гемоглобинопатий – гетерогенной группы наследственных болезней крови, среди которых ведущее положение занимают α- и β-талассемии, а также серповидноклеточная анемия

Слайд 48

α-талассемии – это клинически полиморфная и генетически гетерогенная группа аутосомно-рецессивных заболеваний, обусловленных

α-талассемии – это клинически полиморфная и генетически гетерогенная группа аутосомно-рецессивных заболеваний, обусловленных
мутациями в двух α-глобиновых генах. В типичных случаях болезнь характеризуется гипохромной микроцитарной анемией

Слайд 49

Гемолиз эритроцитов возникает в результате их перегрузки железом, нарушающим эритропоэз и оказывающим

Гемолиз эритроцитов возникает в результате их перегрузки железом, нарушающим эритропоэз и оказывающим
повреждающее действие на мембраны клеток. Анемия может обостряться при присоединении интеркуррентных инфекций и приеме некоторых лекарственных препаратов, например, из группы сульфаниламидов

Слайд 50

У 80% больных развивается гепатоспленомегалия и у 30% - скелетные деформации. α-талассемии

У 80% больных развивается гепатоспленомегалия и у 30% - скелетные деформации. α-талассемии
встречаются во многих частях мира, но особенно распространены в южной Азии и на Филиппинах

Слайд 51

Основной тип мутаций в α-глобиновых генах (HBA1 и HBA2) — это протяженные

Основной тип мутаций в α-глобиновых генах (HBA1 и HBA2) — это протяженные
делеции, которые могут захватывать один или оба гена, а также находиться в гомозиготном или компаунд-гетерозиготном состояниях. В результате в популяциях может наблюдаться полиморфизм по варьирующему от 4 до 0 числу копий α-глобиновых генов

Слайд 52

При этом в разных популяциях найдены специфические мажорные делеции. Среди них самыми

При этом в разных популяциях найдены специфические мажорные делеции. Среди них самыми
частыми в южной Азии, на Филиппинах и Средиземноморье являются соответственно делеции, получившие название SEA, FIL, MED, а также некоторые другие (alpha3.7, alpha4.2)

Слайд 53

Делеция одной копии любого из двух генов, как правило, не имеет клинических

Делеция одной копии любого из двух генов, как правило, не имеет клинических
проявлений. Делеция двух копий α-глобиновых генов приводит к развитию микроцитоза

Слайд 54

Классическая картина хронической гемолитической анемии, сопровождающаяся образованием новых типов гемоглобина, например, гемоглобина

Классическая картина хронической гемолитической анемии, сопровождающаяся образованием новых типов гемоглобина, например, гемоглобина
HbH, состоящего из 4 β-цепей, наблюдается при делеции трех копий α-глобиновых генов. Подобные делеционные формы идентифицируются у 83% больных α-талассемией

Слайд 55

В остальных случаях чаще всего наблюдается сочетание делеций двух копий генов с

В остальных случаях чаще всего наблюдается сочетание делеций двух копий генов с
гетерозиготными точковыми мутациями в одном из генов HBA1 или HBA2

Слайд 56

Некоторые точковые мутации затрагивают район α-цепей, важный для осуществления их контактов с

Некоторые точковые мутации затрагивают район α-цепей, важный для осуществления их контактов с
β-цепями. В этом случае образуется гемоглобин, состоящий из 2 γ- и 2 α-цепей

Слайд 57

При делеции четырех копий α-глобиновых генов α-цепи полностью отсутствуют и образуется гемоглобин,

При делеции четырех копий α-глобиновых генов α-цепи полностью отсутствуют и образуется гемоглобин,
состоящий из 4 γ-цепей – это состояние несовместимо с жизнью

Слайд 58

β-талассемии – это группа клинически полиморфных аутосомно-рецессивных заболеваний, обусловленных мутациями в β-глобиновом

β-талассемии – это группа клинически полиморфных аутосомно-рецессивных заболеваний, обусловленных мутациями в β-глобиновом
гене. Заболевание часто встречается в Центральной Африке, Индии, странах Средиземноморья, Ближнего и Среднего Востока, в том числе, в Азербайджане, Узбекистане и Армении

Слайд 59

Оказалось, что в тех же регионах мира распространен малярийный плазмодий, вызывающий тяжелое

Оказалось, что в тех же регионах мира распространен малярийный плазмодий, вызывающий тяжелое
протозойное заболевание – малярию. Гетерозиготные носители мутаций в гене HBB обладают повышенной устойчивостью к малярии

Слайд 60

Частота гетерозиготного носительства мутации в гене β-глобина в этих популяциях достигает 5-8%.

Частота гетерозиготного носительства мутации в гене β-глобина в этих популяциях достигает 5-8%.
Максимальная распространенность β-талассемии зарегистрирована на Кипре (14%) и в Сардинии (12%)

Слайд 61

В зависимости от типа мутации и наличия β-глобиновых цепей выделяют β0- и

В зависимости от типа мутации и наличия β-глобиновых цепей выделяют β0- и
β+-талассемию. К β0-талассемии приводят мутации с преждевременной терминацией трансляции, при которых β-цепь полностью отсутствует

Слайд 62

Примером тяжелой формы β0-талассемии является анемия Кули. Болезнь проявляется в возрасте от

Примером тяжелой формы β0-талассемии является анемия Кули. Болезнь проявляется в возрасте от
нескольких недель до 2 лет бледностью и иктеричностью, иногда с медным оттенком кожи и слизистых вследствие гемолитической анемии, приступами лихорадки

Слайд 63

При анализе крови выявляется тяжелая гипохромная анемия со снижением содержания гемоглобина и

При анализе крови выявляется тяжелая гипохромная анемия со снижением содержания гемоглобина и
уменьшением количества эритроцитов и изменением их формы – пойкилоцитозом. Сопутствующими проявлениями заболевания являются задержка роста, гепатоспленомегалия, черепно-лицевой дизморфизм

Слайд 64

Часто возникают осложнения в виде трофических язв, цирроза печени, мочекислого диатеза и

Часто возникают осложнения в виде трофических язв, цирроза печени, мочекислого диатеза и
гемосидероза. Причиной развития β+-талассемии чаще всего являются регуляторные мутации, приводящие к снижению количества β-цепи и заменой её в зрелом гемоглобине на γ-цепь

Слайд 65

К редким вариантам β-талассемии относится персистирование фетального гемоглобина, при котором не происходит

К редким вариантам β-талассемии относится персистирование фетального гемоглобина, при котором не происходит
его замены на гемоглобин взрослого. Возникновение симптомов талассемии может наблюдаться при мутациях в регуляторном элементе β-глобиновых генов (LCR)

Слайд 66

Одна из миссенс-мутаций (S) в гене HBB, сопровождающаяся заменой глютамина на валин

Одна из миссенс-мутаций (S) в гене HBB, сопровождающаяся заменой глютамина на валин
в 6 положении β-цепи, приводит к развитию серповидноклеточной анемии. SS-гомозиготы вместо нормального гемоглобина НbА имеют вариант НbS, который полимеризуется с образованием волокон или пучков

Слайд 67

Это приводит к дефекту мембраны эритроцитов, обуславливающему их серповидную форму. Серповидные клетки

Это приводит к дефекту мембраны эритроцитов, обуславливающему их серповидную форму. Серповидные клетки
увеличивают вязкость крови и мешают ее циркуляции в мелких кровеносных сосудах

Слайд 68

Такие эритроциты теряют пластичность, закупоривают капилляры и гемолизируются, вызывая развитие очагов ишемии

Такие эритроциты теряют пластичность, закупоривают капилляры и гемолизируются, вызывая развитие очагов ишемии
и инфаркты с выраженной гипоксией и дистрофией внутренних органов и тканей

Слайд 69

Серповидноклеточная анемия является примером наследования с неполным доминированием. Гетерозиготные носители мутации (Ss)

Серповидноклеточная анемия является примером наследования с неполным доминированием. Гетерозиготные носители мутации (Ss)
в гене гемоглобина имеют промежуточную серповидную форму эритроцитов, которая обеспечивает им относительно нормальный фенотип

Слайд 70

В обычных условиях у этих лиц анемия не выявляется, так как в

В обычных условиях у этих лиц анемия не выявляется, так как в
их крови содержится нормальный гемоглобин HbA, но при низком парциальном давлении кислорода, характерном, например, для высокогорья, патология прогрессирует

Слайд 71

Наследственные анемии

Наследственные анемии

Слайд 72

Не только гемоглобинопатии, но и многие другие наследственные дефекты могут привести к

Не только гемоглобинопатии, но и многие другие наследственные дефекты могут привести к
развитию анемии. Аутосомно-рецессивные или Х-сцепленные рецессивные формы неспецифической гемолитической анемии могут быть обусловлены наследственной недостаточностью многих эритроцитарных ферментов

Слайд 73

Это – глюкозо-6-фосфатдегидрогеназа (G6PD), уридин-5'-монофосфат-гидролаза (UMPH1), пируваткиназа (PKLR), фосфоглицераткиназа (PGK1), глюкозофосфатизомераза (GPI),

Это – глюкозо-6-фосфатдегидрогеназа (G6PD), уридин-5'-монофосфат-гидролаза (UMPH1), пируваткиназа (PKLR), фосфоглицераткиназа (PGK1), глюкозофосфатизомераза (GPI), аденилаткиназа (AK1)
аденилаткиназа (AK1)

Слайд 74

Генетически гетерогенная группа Х-сцепленной и аутосомно-рецессивной анемии Фанкони характеризуется высокой геномной нестабильностью,

Генетически гетерогенная группа Х-сцепленной и аутосомно-рецессивной анемии Фанкони характеризуется высокой геномной нестабильностью,
чувствительностью к агентам, вызывающим перекрестные сшивки между комплементарными нитями ДНК и предрасположенностью к онкологическим заболеваниям

Слайд 75

Анемия Фанкони, являясь одной из форм апластической анемии, клинически проявляется прогрессирующей панцитопенией

Анемия Фанкони, являясь одной из форм апластической анемии, клинически проявляется прогрессирующей панцитопенией
и нередко сопровождается аномалиями развития различных органов и тканей

Слайд 76

Одним из наиболее ранних проявлений заболевания является функциональная недостаточность костного мозга, обусловленная

Одним из наиболее ранних проявлений заболевания является функциональная недостаточность костного мозга, обусловленная
нарушением пролиферации и дифференцировки клеток костного мозга

Слайд 77

В настоящее время идентифицированы 15 генов, мутации которых приводят к анемии Фанкони.

В настоящее время идентифицированы 15 генов, мутации которых приводят к анемии Фанкони.
Продукты этих генов являются белками репарационных комплексов, обеспечивающих поддержание геномной стабильности

Слайд 78

Центральным из этих путей является активация и транспорт к месту повреждения ДНК

Центральным из этих путей является активация и транспорт к месту повреждения ДНК
белков, кодируемых генами FANCD2 и FANCI. Вслед за этим происходит координация ядерных репарационных комплексов

Слайд 79

Мутации в гене FANCD2 являются самой частой причиной анемии Фанкони. Активация продукта

Мутации в гене FANCD2 являются самой частой причиной анемии Фанкони. Активация продукта
гена FANCD2 происходит при участии лигазного комплекса, 8 белков которого кодируются генами, мутантными при других генетических типах этого заболевания (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCМ )

Слайд 80

Репарация перекрестных сшивок ДНК происходит при участии многих других белков, 5 из

Репарация перекрестных сшивок ДНК происходит при участии многих других белков, 5 из
которых кодируются генами, мутантными при остальных генетических типах анемии Фанкони — FANCD1, FANCJ, FANCN, FANCO, FANCP

Слайд 81

Врожденная дизэритропоэтическая анемия — это гетерогенная группа заболеваний, обусловленных неэффективным эритропоэзом. При

Врожденная дизэритропоэтическая анемия — это гетерогенная группа заболеваний, обусловленных неэффективным эритропоэзом. При
редком аутосомно-рецессивном типе I, наряду с макроцитарной мегалобластной анемией, дополнительно выявляются вторичный гемохроматоз, костные аномалии в форме акродизостоза и сколиоза, дисплазия ногтевых пластин

Слайд 82

Причиной заболевания являются мутации в гене коданина-1 (CDAN1). Коданин-1 – это высоко

Причиной заболевания являются мутации в гене коданина-1 (CDAN1). Коданин-1 – это высоко
консервативный белок, необходимый для выживания клеток и их прохождения по клеточному циклу

Слайд 83

При наиболее частом II типе заболевания, характеризующимся нормоцитарными, би- или многоядерными эритроцитами

При наиболее частом II типе заболевания, характеризующимся нормоцитарными, би- или многоядерными эритроцитами
с двойными цитоплазматическими мембранами, выявляемыми при электронной микроскопии, у больных обнаруживаются мутации в гене SEC23B. Продукт этого гена участвует в дифференцировке и цитокинезе клеток эритроидного ряда

Слайд 84

Редкий тип III умеренной дизэритропоэтической анемии, который называется также доброкачественным эритроретикулезом, наследуется

Редкий тип III умеренной дизэритропоэтической анемии, который называется также доброкачественным эритроретикулезом, наследуется
по аутосомно-доминантному типу и характеризуется многоядерным эритробластозом — «гигантобластозом», при котором количество ядер достигает 10-12. Обнаружено сцепление этой формы заболевания с локусом 15q21

Слайд 85

Аутосомно-доминантная врожденная дизэритропоэтическая анемия IV типа, обусловленная мутациями в гене транскрипционного активатора

Аутосомно-доминантная врожденная дизэритропоэтическая анемия IV типа, обусловленная мутациями в гене транскрипционного активатора
(KLF1), по своим клиническим характеристикам отличается от предыдущих форм

Слайд 86

Сидеробластическая анемия характеризуется присутствием в крови эритроидных сидеробластов. Ведущими клиническими проявлениями являются:

Сидеробластическая анемия характеризуется присутствием в крови эритроидных сидеробластов. Ведущими клиническими проявлениями являются:
гипохромная анемия, присутствие двух типов эритроцитов (микроцитов и нормоцитов), наличие в костном мозге кольцевых сидеробластов, особенно на поздних стадиях формирования эритроидных предшественников

Слайд 87

Характерны системная перегрузка железом в результате хронического неэффективного эритропоэза и часто положительный

Характерны системная перегрузка железом в результате хронического неэффективного эритропоэза и часто положительный
гематологический ответ (ретикулоцитарный криз) на терапевтические дозы витамина В6 и пиридоксальфосфата. Возраст начала заболевания может варьировать в очень широких пределах от внутриутробного периода до глубокой старости

Слайд 88

Наследственные формы заболевания включают в себя два типа — Х-сцепленную рецессивную, пиридоксин(витамин

Наследственные формы заболевания включают в себя два типа — Х-сцепленную рецессивную, пиридоксин(витамин
В6)-зависимую, обусловленную мутациями в гене ALAS2 и аутосомно-рецессивную пиридоксин-рефрактерную анемию, обусловленную мутациями в гене SLC25A38

Слайд 89

Продуктом гена ALAS2 является эритроид-специфический фермент – дельта-аминолевулинатсинтетаза, катализирующая первый шаг в

Продуктом гена ALAS2 является эритроид-специфический фермент – дельта-аминолевулинатсинтетаза, катализирующая первый шаг в биосинтезе гема
биосинтезе гема

Слайд 90

У больных с аутосомно-рецессивной формой заболевания также снижен уровень дельта-аминолевулинатсинтетазы 2 в

У больных с аутосомно-рецессивной формой заболевания также снижен уровень дельта-аминолевулинатсинтетазы 2 в
результате недостаточности одного из митохондриальных транспортеров, кодируемых геном SLC25A38

Слайд 91

В12-дефицитная, или мегалобластная пернициозная (злокачественная) анемия обусловлена дефицитом витамина В12, который связан

В12-дефицитная, или мегалобластная пернициозная (злокачественная) анемия обусловлена дефицитом витамина В12, который связан
с его недостаточным поступлением в организм с пищей

Слайд 92

Редкие моногенные формы В12-дефицитной пернициозной анемии связаны с нарушением усвоения витамина В12

Редкие моногенные формы В12-дефицитной пернициозной анемии связаны с нарушением усвоения витамина В12 в организме
в организме

Слайд 93

Поступающий с пищей витамин В12 образует комплекс с внутренним желудочным фактором, который

Поступающий с пищей витамин В12 образует комплекс с внутренним желудочным фактором, который
затем взаимодействует со специфическим рецептором. Образование этого комплекса и его взаимодействие с рецептором необходимо для всасывания витамина В12

Слайд 94

Среди наследственных типов мегалобластной анемии наиболее известным является синдром Имерслунд-Гресбека, характеризующийся одновременным

Среди наследственных типов мегалобластной анемии наиболее известным является синдром Имерслунд-Гресбека, характеризующийся одновременным
поражением у детей чаще всего в возрасте 1-4 лет пищеварительной и нервной системы, дефектами кожных покровов. В 90% случаев болезнь сопровождается протеинурией.

Слайд 95

Два генетических типа заболевания – финский и норвежский – обусловлены мутациями в

Два генетических типа заболевания – финский и норвежский – обусловлены мутациями в
генах CUBN и AMN. Продукты этих генов участвуют в образовании рецептора для комплекса витамина В12 с внутренним желудочным фактором. В возрасте 20 лет симптомы заболевания нередко исчезают самостоятельно

Слайд 96

Более редкий генетический тип пернициозной анемии с дефицитом витамина В12 обусловлен наследственной

Более редкий генетический тип пернициозной анемии с дефицитом витамина В12 обусловлен наследственной
недостаточностью внутреннего желудочного фактора, кодируемого геном GIF. При наличии гиперхромной мегалобластной анемии тяжелой степени и мегалобластном типе кроветворения наблюдается фуникулярный миелоз, глоссит и поражения других органов и систем

Слайд 97

Наследственная В12-дефицитная мегалобластная анемия, сочетающаяся с сахарным диабетом и нейросенсорной тугоухостью, является

Наследственная В12-дефицитная мегалобластная анемия, сочетающаяся с сахарным диабетом и нейросенсорной тугоухостью, является
одним из проявлений синдрома дисфункции тиаминового (витамина В1) метаболизма, обусловленного мутациями в гене тиаминового транспортера SLC19A2

Слайд 98

Аутосомно-рецессивная мегалобластная анемия нередко сочетается с задержкой психического развития, генерализованными судорожными приступами,

Аутосомно-рецессивная мегалобластная анемия нередко сочетается с задержкой психического развития, генерализованными судорожными приступами,
развивающимися в младенческом возрасте, с последующим формированием абсанс-эпилепсии и трудностей в обучении

Слайд 99

Этот генетический тип мегалобластной анемии обусловлен наследственной недостаточностью ключевого  фермента метаболизма фолатов

Этот генетический тип мегалобластной анемии обусловлен наследственной недостаточностью ключевого фермента метаболизма фолатов
– дигидрофолатредуктазы, кодируемой геном DHFR. Назначение фолиевой кислоты может в некоторых случаях улучшить состояние больного

Слайд 100

Железодефицитная рефрактерная микроцитарная анемия без признаков нарушения метаболизма железа или кровотечений обусловлена

Железодефицитная рефрактерная микроцитарная анемия без признаков нарушения метаболизма железа или кровотечений обусловлена
мутациями в гене TMPRSS6. Продуктом этого гена является трансмембранная сериновая протеаза, участвующая в расщеплении антимикробного пептида гепсидина — ключевого регулятора абсорбции железа и снижения его токсичности

Слайд 101

Напомним, что мутации в гене гепсидина приводят к аутосомно-рецессивному ювенильному гемохроматозу типа

Напомним, что мутации в гене гепсидина приводят к аутосомно-рецессивному ювенильному гемохроматозу типа
2B. Прием препаратов железа при данной форме железодефицитной анемии неэффективен, так как они не всасываются в кишечнике

Слайд 102

Гетерогенная группа аутосомно-доминантных младенческих форм анемии Блекфена-Даймонда, сопровождающихся врожденной эритроидной дисплазией, обусловлена

Гетерогенная группа аутосомно-доминантных младенческих форм анемии Блекфена-Даймонда, сопровождающихся врожденной эритроидной дисплазией, обусловлена
мутациями в генах различных рибосомных белков. В 30-40% случаев у больных наблюдаются черепно-лицевые аномалии и другие врожденные пороки развития, затрагивающие чаще всего верхние конечности

Слайд 103

Характерным является хроническое течение анемии, однако у части больных, чаще в периоде

Характерным является хроническое течение анемии, однако у части больных, чаще в периоде
пубертата, отмечается спонтанная ремиссия. Лечение анемии Блекфена-Даймонда заключается в назначении глюкокортикостероидов

Слайд 104

В настоящее время идентифицированы 10 генов рибосомных белков, суммарно объясняющих более 50%

В настоящее время идентифицированы 10 генов рибосомных белков, суммарно объясняющих более 50%
всех случаев анемии Блекфена-Даймонда. Наиболее частой причиной этого заболевания являются гетерозиготные мутации в гене рибосомного белка S19 (RPS19)

Слайд 105

Апластическая анемия — заболевание кроветворной системы, относящееся к миелодисплазиям и выражающееся в

Апластическая анемия — заболевание кроветворной системы, относящееся к миелодисплазиям и выражающееся в
резком угнетении или прекращении роста и созревания клеток всех ростков кроветворения в костном мозге (панмиелофтиз). Это достаточно редкая и тяжелая патология, поражающая в год от 2 до 5 человек на миллион населения

Слайд 106

Без лечения больные с тяжелыми формами апластической анемии погибают в течение нескольких

Без лечения больные с тяжелыми формами апластической анемии погибают в течение нескольких
месяцев. При своевременном адекватном лечении прогноз заболевания относительно благоприятный

Слайд 107

Согласно современным представлениям ключевым фактором в понимании патогенеза апластической анемии является положение

Согласно современным представлениям ключевым фактором в понимании патогенеза апластической анемии является положение
о главенствующей роли дефекта стволовой клетки крови, возникающего вследствие воздействия неизвестного пускового агента

Слайд 108

Этот дефект близок по характеру или идентичен соматической мутации. Об этом свидетельствует

Этот дефект близок по характеру или идентичен соматической мутации. Об этом свидетельствует
восстановление кроветворения у больных после трансплантации аллогенного костного мозга, содержащего нормальные стволовые клетки. В 75% случаев заболевание носит идиопатический характер

Слайд 109

В 15% случаев причиной аплазии является прием лекарственных препаратов или инфекционный процесс,

В 15% случаев причиной аплазии является прием лекарственных препаратов или инфекционный процесс,
хотя наследственные причины подобной индивидуальной чувствительности до сих пор остаются неизвестными

Слайд 110

В 5-10% случаев заболевание носит семейный характер или сочетается с другими соматическими

В 5-10% случаев заболевание носит семейный характер или сочетается с другими соматическими
аномалиями. К наследственным формам апластической анемии относится также и анемия Фанкони

Слайд 111

В настоящее время идентифицированы гены, гетерозиготные мутации в которых повышают риск развития

В настоящее время идентифицированы гены, гетерозиготные мутации в которых повышают риск развития
апластической анемии. Это гены гамма-интерферона (IFNG), нибрина — одного из ферментов репарации двунитевых разрывов ДНК (NBS1), перфорина-1 — пор-формирующего белка цитолитических гранул, участвующего в формировании мембранных пор (PRF1), и белка, предположительно участвующего в процессинге рРНК (SBDS)

Слайд 112

Кроме того, укорочение теломер, обусловленное присутствием гетерозиготных мутаций в генах TERT и

Кроме того, укорочение теломер, обусловленное присутствием гетерозиготных мутаций в генах TERT и
TERC, также повышает риск развития апластической анемии в сочетании с фиброзом легких и печени

Слайд 113

Гемофилия А и гемофилия В

Гемофилия А и гемофилия В

Слайд 114

В основе развития Х-сцепленных рецессивных форм гемофилии А и гемофилии В лежат

В основе развития Х-сцепленных рецессивных форм гемофилии А и гемофилии В лежат
наследственные дефекты двух факторов свертывания крови – VIII и IX –, обусловленные мутациями в генах F8C и F9 соответственно

Слайд 115

При любой из этих форм наблюдаются нарушения свертывания крови, и самые незначительные

При любой из этих форм наблюдаются нарушения свертывания крови, и самые незначительные
травмы без специальной гематологической помощи могут привести больного к летальному исходу. Частота гемофилии А составляет 1 : 5000 новорожденных мальчиков, гемофилия В встречается в 10 раз реже

Слайд 116

Отметим, что у женщин – носительниц мутаций в одном из генов гемофилии

Отметим, что у женщин – носительниц мутаций в одном из генов гемофилии
в отдельных случаях также наблюдается склонность к кровотечениям, что выражается в обильных месячных и длительных кровотечениях во время родов. В настоящее время возможна пренатальная диагностика гемофилии А и В

Слайд 117

Фактор VIII – это большой сывороточный гликопротеин, который функционирует в коагуляционном каскаде

Фактор VIII – это большой сывороточный гликопротеин, который функционирует в коагуляционном каскаде
как кофактор для активации фактора X. Протеолитически он активируется множеством коагуляционных ферментов, включая тромбин. В неактивном состоянии фактор VIII тесно ассоциирован с фактором Виллебранда

Слайд 118

Около 10% всех идентифицированных мутаций в гене F8С – делеции одного или

Около 10% всех идентифицированных мутаций в гене F8С – делеции одного или
нескольких смежных нуклеотидов. Остальные мутации точковые – миссенс- или нонсенс-типа. В 45% случаев у больных с тяжелыми формами гемофилии А обнаруживаются протяженные инверсии, которые затрагивают большую часть гена F8С от 5'-нетранслируемой области до 22 интрона включительно

Слайд 119

Подобные инверсии полностью инактивируют ген F8С. Их возникновение связано с особенностями молекулярной

Подобные инверсии полностью инактивируют ген F8С. Их возникновение связано с особенностями молекулярной структуры гена F8С
структуры гена F8С

Слайд 120

Около 14% матерей больных мальчиков являются соматическими или гонадными мозаиками, и вероятность

Около 14% матерей больных мальчиков являются соматическими или гонадными мозаиками, и вероятность
повторного рождения больного ребенка у них также повышена

Слайд 121

Фактор IX в плазме крови находится в виде гетеродимера, состоящего из двух

Фактор IX в плазме крови находится в виде гетеродимера, состоящего из двух
полипептидных цепей (легкой и тяжелой), ковалентно связанных между собой дисульфидным мостиком

Слайд 122

Он циркулирует в виде неактивной формы до тех пор, пока не произойдет

Он циркулирует в виде неактивной формы до тех пор, пока не произойдет
протеолитическое высвобождение активирующего его пептида, после чего фактор IX принимает конформацию активной сериновой протеазы

Слайд 123

Его роль в свертывании крови связана с активацией фактора X посредством взаимодействия

Его роль в свертывании крови связана с активацией фактора X посредством взаимодействия
с ионами кальция, фосфолипидами мембраны и фактором VIII

Слайд 124

Для генов F8 и F9 характерна высокая частота возникновения мутаций (4х10–6 за

Для генов F8 и F9 характерна высокая частота возникновения мутаций (4х10–6 за
поколение), причем мутации значительно чаще возникают в мужских половых клетках, чем женских. Считается, что вероятность получения больным ребенком возникшей de novo мутации от отца в 11 раз выше, чем от матери

Слайд 125

При этом с возрастом вероятность возникновения новых мутаций в гене F9 у

При этом с возрастом вероятность возникновения новых мутаций в гене F9 у
отца повышается. По разным оценкам считается, что в спорадических случаях вероятность гетерозиготного носительства мутации у матери составляет лишь 80%. В 40% случаев при тяжелых формах гемофилии В у больных обнаруживаются делеции в гене F9 различной протяженности

Слайд 126

Точковые мутации в промоторной области гена связаны с более легкими формами заболевания,

Точковые мутации в промоторной области гена связаны с более легкими формами заболевания,
такими, например, как Лейденская гемофилия, при которой у больных к возрасту половой зрелости наступает улучшение многих клинических показателей, в частности, исчезает геморрагический синдром

Слайд 127

Болезнь Виллебранда

Болезнь Виллебранда

Слайд 128

Болезнь Виллебранда — это частое наследственное заболевание крови, проявляющееся спонтанными кровотечениями. Распространенность

Болезнь Виллебранда — это частое наследственное заболевание крови, проявляющееся спонтанными кровотечениями. Распространенность
болезни Виллебранда – 1 случай на 800 - 1000 человек

Слайд 129

Основными клиническими проявлениями заболевания являются обильные носовые и десневые кровотечения, кровотечения из

Основными клиническими проявлениями заболевания являются обильные носовые и десневые кровотечения, кровотечения из
внутренних органов с образованием гематом, меноррагии, длительные кровотечения после хирургических вмешательств и травм

Слайд 130

В основе патогенеза лежат нарушения агрегации тромбоцитов, возникающие вследствие недостаточности фактора Виллебранда

В основе патогенеза лежат нарушения агрегации тромбоцитов, возникающие вследствие недостаточности фактора Виллебранда
(ФВ) — большого мультимерного белка, играющего ключевую роль в адгезии тромбоцитов к коллагену и их агрегации, а также служащего переносчиком для фактора VIII свертывания крови

Слайд 131

Болезнь Виллебранда делится на 3 основных типа. При первом доброкачественном типе, который

Болезнь Виллебранда делится на 3 основных типа. При первом доброкачественном типе, который
диагностируется в 60-80% случаев, наблюдается умеренный дефицит ФВ с сохранением его функциональной активности. При этом уровень фактора VIII свертывания крови снижен до 5-30% по сравнению с нормой

Слайд 132

Второй тип заболевания, характеризующийся структурными нарушениями ФВ, выявляется у 10-30% больных. В

Второй тип заболевания, характеризующийся структурными нарушениями ФВ, выявляется у 10-30% больных. В
этом случае у больных может быть нарушена функция ФВ, связанная с агрегацией тромбоцитов, или теряется его способность связывать фактор VIII

Слайд 133

Самый тяжелый третий тип заболевания обусловлен значительной количественной недостаточностью ФВ (менее 1%

Самый тяжелый третий тип заболевания обусловлен значительной количественной недостаточностью ФВ (менее 1%
нормы) или его полным отсутствием. В этом случае у больных наблюдаются интенсивные рецидивирующие геморрагии, сопровождающиеся выраженной анемизацией. Этот редкий тип заболевания встречается с частотой 1 случай на миллион населения и составляет не более 1-5% среди всех больных

Слайд 134

Наследуется болезнь Виллебранда по аутосомно-доминантному типу с неполной пенетрантностью. Все клинические типы

Наследуется болезнь Виллебранда по аутосомно-доминантному типу с неполной пенетрантностью. Все клинические типы
болезни Виллебранда обусловлены гетерозиготными мутациями в гене VWF, спектр которых достаточно разнообразен

Слайд 135

Большинство составляют миссенс-мутации, наиболее частой из которых является R1205H. На проявление мутаций

Большинство составляют миссенс-мутации, наиболее частой из которых является R1205H. На проявление мутаций
могут оказывать влияние многие факторы, такие как тиреоидные гормоны, эстрогены, разные виды стресса, возраст

Слайд 136

Однако наибольшее модифицирующее влияние оказывает присутствие нулевой группы крови по системе АВ0.

Однако наибольшее модифицирующее влияние оказывает присутствие нулевой группы крови по системе АВ0.
Это объясняется тем, что глюкозилтрансфераза, отсутствующая у носителей 0 группы крови, участвует в процессинге ФВ, повышая его устойчивость ко многим эндогенным и экзогенным факторам

Слайд 137

Лечение при болезни Виллебранда определяется типом заболевания и выраженностью геморрагического синдрома. Так,

Лечение при болезни Виллебранда определяется типом заболевания и выраженностью геморрагического синдрома. Так,
при первом типе болезни показан десмопрессин – синтетический аналог вазопрессина, который оказывает вазопрессорное, антидиуретическое действие и стимулирует выработку фактора Виллебранда и VIII коагуляционного фактора

Слайд 138

При тяжелых формах используют вирусинактивированные (не содержащие вирусов гепатита В и С)

При тяжелых формах используют вирусинактивированные (не содержащие вирусов гепатита В и С)
концентраты, включающие в себя фактор Виллебранда (препарат "Вилате")

Слайд 139

Наследственные тромбофилии

Наследственные тромбофилии

Слайд 140

В настоящее время достигнут определенный прогресс в выявлении генетических факторов риска тромбофилии

В настоящее время достигнут определенный прогресс в выявлении генетических факторов риска тромбофилии
– нарушений гемостаза, обуславливающих повышенную склонность к развитию тромбозов кровеносных сосудов различного калибра и локализации, а также тромбоэмболий и инфарктов органов

Слайд 141

При наследственной тромбофилии значительно повышен риск развития в течение жизни венозных тромбозов

При наследственной тромбофилии значительно повышен риск развития в течение жизни венозных тромбозов и тромбоэмболии легочной артерии
и тромбоэмболии легочной артерии

Слайд 142

К генетическим маркерам наследственной тромбофилии относят наследственные дефициты белков С, S и

К генетическим маркерам наследственной тромбофилии относят наследственные дефициты белков С, S и
антитромбина, а также мутации в генах факторов свертывания крови V и II, или протромбина (F5 и F2)

Слайд 143

Протеины С и S, а также протромбин – синтезируемые в печени витамин

Протеины С и S, а также протромбин – синтезируемые в печени витамин
К-зависимые сывороточные гликопротеины, являются ключевыми компонентами антикоагулянтной системы

Слайд 144

Протеин С активируется на поверхности эндотелия сосудов при помощи тромбин-тромбомодулинового комплекса. Действуя

Протеин С активируется на поверхности эндотелия сосудов при помощи тромбин-тромбомодулинового комплекса. Действуя
как сериновая протеаза, он расщепляет активированные формы факторов V и VIII свертывания крови

Слайд 145

Белок S является кофактором активированного белка С. Фактор II свертывания крови конвертируется

Белок S является кофактором активированного белка С. Фактор II свертывания крови конвертируется
в тромбин фактором Xa в присутствии фосфолипидов, кальция и фактора Va

Слайд 146

Активированный тромбин конвертирует фибриноген в фибрин, стимулируя тем самым агрегацию тромбоцитов, и

Активированный тромбин конвертирует фибриноген в фибрин, стимулируя тем самым агрегацию тромбоцитов, и
в свою очередь активирует факторы V, VIII и XIII

Слайд 147

Фактор V свертывания крови циркулирует в крови в неактивной форме. Он активируется

Фактор V свертывания крови циркулирует в крови в неактивной форме. Он активируется
тромбином и действует как кофактор при конверсии протромбина в тромбин. Активированный фактор Va инактивируется активированным белком С

Слайд 148

Главным ингибитором тромбина является антитромбин III, принадлежащий к суперсемейству ингибиторов сериновых протеиназ

Главным ингибитором тромбина является антитромбин III, принадлежащий к суперсемейству ингибиторов сериновых протеиназ (серпинов)
(серпинов)

Слайд 149

Гетерозиготные мутации в генах протеина С (PROC) и S (PROS1) приводят к

Гетерозиготные мутации в генах протеина С (PROC) и S (PROS1) приводят к
двум редким формам наследственной тромбофилии. Наследственная недостаточность антитромбина III, кодируемого геном AT3D, является генетическим фактором риска развития венозных тромбозов

Слайд 150

Однако мутации в генах PROC, PROS1 и AT3D являются редкой причиной наследственных

Однако мутации в генах PROC, PROS1 и AT3D являются редкой причиной наследственных
тромбофилий, так как их суммарные частоты в популяции не превышают 0.4% и достигают 2% среди пациентов с венозными тромбозами. Как правило, эти нарушения выявляются при анализе коагулограммы

Слайд 151

Главной причиной наследственной тромбофилии является присутствие гомозиготных и гетерозиготных мутаций в генах

Главной причиной наследственной тромбофилии является присутствие гомозиготных и гетерозиготных мутаций в генах
F2 и F5. В гене F5 идентифицирована миссенс-мутация R506Q, затрагивающая сайт расщепления фактора Va активированным белком C

Слайд 152

В результате фактор Va становится устойчивым к действию активированного белка С. Замена

В результате фактор Va становится устойчивым к действию активированного белка С. Замена
R506Q получила название Лейденской мутации, или Лейденского фактора V

Слайд 153

Её гетерозиготное носительство повышает риск развития венозной тромбоэмболии в 5 раз, причем

Её гетерозиготное носительство повышает риск развития венозной тромбоэмболии в 5 раз, причем
в этом случае тромбоз чаще всего начинается с глубоких вен. Частота гетерозигот по Лейденскому фактору V в различных популяциях мира колеблется в пределах от 2% до 7%

Слайд 154

Некоторые внешние факторы могут резко увеличивать частоту тромбозов при наличии Лейденской мутации.

Некоторые внешние факторы могут резко увеличивать частоту тромбозов при наличии Лейденской мутации.
Это – хирургические вмешательства, прием пероральных контрацептивов, беременность, повреждения сосудов и вынужденная обездвиженность больного

Слайд 155

У гомозигот по Лейденской мутации, которые встречаются в популяциях значительно реже, риск

У гомозигот по Лейденской мутации, которые встречаются в популяциях значительно реже, риск
тромбозов и тромбоэмболии составляет десятки процентов и может достигать 100% при действии провоцирующих факторов

Слайд 156

В гене F5 описаны также и другие мутации, которые в гомозиготном или

В гене F5 описаны также и другие мутации, которые в гомозиготном или
компаунд-гетерозиготном состоянии приводят к недостаточности фактора V и увеличению риска венозных тромбозов. В некоторых случаях подобные мутации обнаруживаются у больных с одной из форм геморрагического диатеза – парагемофилией

Слайд 157

Присутствие инактивирующих мутаций в гене F5 в компаунде с Лейденским фактором V

Присутствие инактивирующих мутаций в гене F5 в компаунде с Лейденским фактором V
(псевдогомозиготность по Лейденскому фактору V) значительно увеличивает риск развития тромбозов

Слайд 158

Спектр мутаций в гене F2 также хорошо изучен. Мажорной является замена G20210A.

Спектр мутаций в гене F2 также хорошо изучен. Мажорной является замена G20210A.
Носительство этой мутации увеличивает риск тромбозов в 3 раза, а при сочетании с Лейденским фактором V – до 80 раз, хотя такое сочетание двух неблагоприятных аллелей крайне редко встречается в популяции

Слайд 159

Необходимо учитывать, что риск развития венозных тромбозов резко возрастает при сочетании наследственной

Необходимо учитывать, что риск развития венозных тромбозов резко возрастает при сочетании наследственной
предрасположенности к тромбофилии с внешними модифицирующими факторами. В настоящее время показаниями для генетического тестирования с целью исключения наследственной тромбофилии являются следующие:

Слайд 160

1. наличие венозной тромбоэмболии в семейном анамнезе; 2. первый случай венозной тромбоэмболии

1. наличие венозной тромбоэмболии в семейном анамнезе; 2. первый случай венозной тромбоэмболии
в возрасте до 50 лет; 3. рецидивирующая венозная тромбоэмболия; 4. прием пероральных контрацептивов или наличие гормонзаместительной терапии; 5. привычное невынашивание беременности

Слайд 161

Разработаны схемы ведения и лечения беременных женщин с наследственными факторами предрасположенности к

Разработаны схемы ведения и лечения беременных женщин с наследственными факторами предрасположенности к тромбофилии
тромбофилии
Имя файла: Наследственные-болезни-крови.pptx
Количество просмотров: 40
Количество скачиваний: 0