Показательная функция

Слайд 2

Показательная функция

Некоторые наиболее часто встречающиеся виды трансцендентных функций, прежде всего показательные, открывают

Показательная функция Некоторые наиболее часто встречающиеся виды трансцендентных функций, прежде всего показательные,
доступ ко многим исследованиям.
Л. Эйлер

Слайд 3

Определение. Показательной функцией называется функция y=ax, где а – заданное число, а>0, а≠1.

Определение. Показательной функцией называется функция y=ax, где а – заданное число, а>0, а≠1.

Слайд 4

Свойства показательной функции

1. Область определения показательной функции – множество R всех действительных

Свойства показательной функции 1. Область определения показательной функции – множество R всех
чисел.

2. Множество значений показательной функции – множество всех положительных чисел.

3. Показательная функция y=ax является возрастающей на множестве всех действительных чисел, если a>1, и убывающей, если 0

Слайд 5

График показательной функции

График показательной функции

Слайд 6

Сравнение чисел

Сравните числа:
а) 2π и 23,14.
Решение.
Так как π>3,14 и у=2х возрастает на

Сравнение чисел Сравните числа: а) 2π и 23,14. Решение. Так как π>3,14
R,
то 2π>23,14.

б)

и

.

Так как

<

и

убывает на R,

то

Решение.

Слайд 9

Методы решения показательных уравнений

1.

Ответ x= -3

Методы решения показательных уравнений 1. Ответ x= -3

Слайд 17

Решение простейших показательных неравенств

Если а>1, то

Если 0<а<1, то

Решение простейших показательных неравенств Если а>1, то Если 0

Слайд 18

Графики показательной функции

Графики показательной функции
Имя файла: Показательная-функция.pptx
Количество просмотров: 52
Количество скачиваний: 0