Содержание
- 2. Ch2_ 2.1 Addition, Scalar Multiplication, and Multiplication of Matrices Definition Two matrices are equal if they
- 3. Ch2_ Addition of Matrices Definition Let A and B be matrices of the same size. Their
- 4. Ch2_ Example 1 Solution (2) Because A is 2 × 3 matrix and C is a
- 5. Ch2_ Scalar Multiplication of matrices Definition Let A be a matrix and c be a scalar.
- 6. Ch2_ Negation and Subtraction Definition We now define subtraction of matrices in such a way that
- 7. Ch2_ Multiplication of Matrices Definition Let the number of columns in a matrix A be the
- 8. Ch2_ Example 4 BA and AC do not exist. Solution. Note. In general, AB≠BA.
- 9. Ch2_ Example 5 Determine AB.
- 10. Ch2_ Size of a Product Matrix If A is an m × r matrix and B
- 11. Ch2_ Definition A zero matrix is a matrix in which all the elements are zeros. A
- 12. Ch2_ Theorem 2.1 Let A be m × n matrix and Omn be the zero m
- 13. Ch2_ Homework Exercises will be given by the teachers of the practical classes. Solution
- 14. Ch2_ 2.2 Algebraic Properties of Matrix Operations Theorem 2.2 -1 Let A, B, and C be
- 15. Ch2_ Let A, B, and C be matrices and a, b, and c be scalars. Assume
- 16. Ch2_ Proof of Theorem 2.2 (A+B=B+A) Consider the (i,j)th elements of matrices A+B and B+A: ∴
- 17. Ch2_ Arithmetic Operations If A is an m × r matrix and B is r ×
- 18. Ch2_ Example 10 Count the number of multiplications. Which method is better? 2×6+3×2 =12+6=18 3×2+2×2 =6+4=10
- 19. Ch2_ In algebra we know that the following cancellation laws apply. If ab = ac and
- 20. Ch2_ Powers of Matrices Theorem 2.3 If A is an n × n square matrix and
- 21. Ch2_ Example 12 Solution
- 22. Ch2_ Systems of Linear Equations A system of m linear equations in n variables as follows
- 23. Ch2_ Idempotent and Nilpotent Matrices Definition A square matrix A is said to be idempotent if
- 24. Ch2_ Homework Exercises will be given by the teachers of the practical classes.
- 25. Ch2_ 2.3 Symmetric Matrices Definition The transpose of a matrix A, denoted At, is the matrix
- 26. Ch2_ Theorem 2.4: Properties of Transpose Let A and B be matrices and c be a
- 27. Ch2_ Symmetric Matrix Definition A symmetric matrix is a matrix that is equal to its transpose.
- 28. Ch2_ Remark: If and only if Let p and q be statements. Suppose that p implies
- 29. Ch2_ Example 17 *We have to show (a) AB is symmetric ⇒ AB = BA, and
- 30. Ch2_ Example 18 Proof Let A be a symmetric matrix. Prove that A2 is symmetric.
- 31. Homework Exercises will be given by the teachers of the practical classes.
- 32. Ch2_ 2.4 The Inverse of a Matrix Definition Let A be an n × n matrix.
- 33. Ch2_ Theorem 2.5 The inverse of an invertible matrix is unique. Proof Let B and C
- 34. Ch2_ Gauss-Jordan Elimination for finding the Inverse of a Matrix Let A be an n ×
- 35. Ch2_ Example 20 Solution
- 36. Ch2_ Example 21 Determine the inverse of the following matrix, if it exist. Solution There is
- 37. Ch2_ Properties of Matrix Inverse Let A and B be invertible matrices and c a nonzero
- 38. Ch2_ Solution
- 39. Ch2_ Theorem 2.6 Let AX = B be a system of n linear equations in n
- 40. Ch2_ Example 22 Solution
- 41. Ch2_ Elementary Matrices Definition An elementary matrix is one that can be obtained from the identity
- 42. Ch2_ Elementary Matrices 。 Elementary row operation 。 Elementary matrix
- 43. Ch2_ Notes for elementary matrices Each elementary matrix is invertible. Example 24 If A and B
- 45. Скачать презентацию










































Мебель. Модуль А
Учебные видеоролики, как ресурс саморазвития
Interior and furniture
Физика и Великая отечественная война
Печь – царица дома
Рисование пейзажа восковыми мелками: пошаговый мастер-класс для начинающих
«Опыт создания и деятельность Объединения РаЭл»
Основные понятия проектного менеджмента. Кейс 2
Презентация на тему ДЕКОДИРОВАНИЕ ИНФОРМАЦИИ
Знай, выбор сделать в жизни Придет и твой черед…
Презентация на тему Страницы истории 19 века (4 класс)
Обеспечение эффективного управления качеством инновационных проектов
Что такое калибровка?
ПСИХОТЕХНОЛОГИИ СБЕРЕЖЕНИЯ ЗДОРОВЬЯ ПЕДАГОГА
МОЙ ГОРОД ДЗЕРЖИНСКИЙ
Кострома
Улицы, по которым ты ходишь
Урок русского языка в 4 классе «Правописание безударных окончаний существительных в 1-м и 3 –м склонениях в родительном и датель
Олимпиада СОЧИ- 2014
Разработка и исследование программно-аппаратного комплекса для испытаний усилителей СВЧ диапазона
Создание анимации, Знакомство с программой GIF ANImator
История Олимпийских игр прошлых веков
Отчет о работе ОАО ЕПК Волжский в области качества (июль 2021 г)
Схема настила
New Year
Бианки "Мышонок Пик" 3 класс
Правила технической эксплуатации
Презентация на тему Социализация личности (формирование первоначальных представлений)