Содержание
- 2. What is search for? Assumptions: single agent, deterministic, fully observable, discrete environment Search for planning The
- 3. Constraint satisfaction problems (CSPs) Definition: State is defined by variables Xi with values from domain Di
- 4. Example: Map Coloring Variables: WA, NT, Q, NSW, V, SA, T Domains: {red, green, blue} Constraints:
- 5. Example: Map Coloring Solutions are complete and consistent assignments, e.g., WA = red, NT = green,
- 6. Example: n-queens problem Put n queens on an n × n board with no two queens
- 7. Example: N-Queens Variables: Xij Domains: {0, 1} Constraints: Σi,j Xij = N (Xij, Xik) ∈ {(0,
- 8. N-Queens: Alternative formulation Variables: Qi Domains: {1, … , N} Constraints: ∀ i, j non-threatening (Qi
- 9. Example: Cryptarithmetic Variables: T, W, O, F, U, R X1, X2 Domains: {0, 1, 2, …,
- 10. Example: Sudoku Variables: Xij Domains: {1, 2, …, 9} Constraints: Alldiff(Xij in the same unit) Xij
- 11. Real-world CSPs Assignment problems e.g., who teaches what class Timetable problems e.g., which class is offered
- 12. Standard search formulation (incremental) States: Variables and values assigned so far Initial state: The empty assignment
- 13. Standard search formulation (incremental) What is the depth of any solution (assuming n variables)? n (this
- 14. Backtracking search In CSP’s, variable assignments are commutative For example, [WA = red then NT =
- 15. Example
- 16. Example
- 17. Example
- 18. Example
- 19. Backtracking search algorithm Making backtracking search efficient: Which variable should be assigned next? In what order
- 20. Which variable should be assigned next? Most constrained variable: Choose the variable with the fewest legal
- 21. Which variable should be assigned next? Most constrained variable: Choose the variable with the fewest legal
- 22. Which variable should be assigned next? Most constraining variable: Choose the variable that imposes the most
- 23. Which variable should be assigned next? Most constraining variable: Choose the variable that imposes the most
- 24. Given a variable, in which order should its values be tried? Choose the least constraining value:
- 25. Given a variable, in which order should its values be tried? Choose the least constraining value:
- 26. Early detection of failure Apply inference to reduce the space of possible assignments and detect failure
- 27. Early detection of failure Apply inference to reduce the space of possible assignments and detect failure
- 28. Early detection of failure: Forward checking Keep track of remaining legal values for unassigned variables Terminate
- 29. Early detection of failure: Forward checking Keep track of remaining legal values for unassigned variables Terminate
- 30. Early detection of failure: Forward checking Keep track of remaining legal values for unassigned variables Terminate
- 31. Early detection of failure: Forward checking Keep track of remaining legal values for unassigned variables Terminate
- 32. Early detection of failure: Forward checking Keep track of remaining legal values for unassigned variables Terminate
- 33. Constraint propagation Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection
- 34. Simplest form of propagation makes each pair of variables consistent: X ?Y is consistent iff for
- 35. Simplest form of propagation makes each pair of variables consistent: X ?Y is consistent iff for
- 36. Simplest form of propagation makes each pair of variables consistent: X ?Y is consistent iff for
- 37. Arc consistency Simplest form of propagation makes each pair of variables consistent: X ?Y is consistent
- 38. Arc consistency Simplest form of propagation makes each pair of variables consistent: X ?Y is consistent
- 39. Simplest form of propagation makes each pair of variables consistent: X ?Y is consistent iff for
- 40. Simplest form of propagation makes each pair of variables consistent: X ?Y is consistent iff for
- 41. Arc consistency algorithm AC-3
- 42. Does arc consistency always detect the lack of a solution? There exist stronger notions of consistency
- 43. Tree-structured CSPs Certain kinds of CSPs can be solved without resorting to backtracking search! Tree-structured CSP:
- 44. Algorithm for tree-structured CSPs Choose one variable as root, order variables from root to leaves such
- 45. Algorithm for tree-structured CSPs Choose one variable as root, order variables from root to leaves such
- 46. Algorithm for tree-structured CSPs Choose one variable as root, order variables from root to leaves such
- 47. Algorithm for tree-structured CSPs If n is the numebr of variables and m is the domain
- 48. Nearly tree-structured CSPs Cutset conditioning: find a subset of variables whose removal makes the graph a
- 49. Algorithm for tree-structured CSPs Running time is O(nm2) (n is the number of variables, m is
- 50. Computational complexity of CSPs The satisfiability (SAT) problem: Given a Boolean formula, is there an assignment
- 51. Local search for CSPs Start with “complete” states, i.e., all variables assigned Allow states with unsatisfied
- 52. Local search for CSPs Start with “complete” states, i.e., all variables assigned Allow states with unsatisfied
- 53. Local search for CSPs Start with “complete” states, i.e., all variables assigned Allow states with unsatisfied
- 54. CSP in computer vision: Line drawing interpretation An example polyhedron: Domains: +, –, →, ← Variables:
- 55. CSP in computer vision: Line drawing interpretation Four vertex types: Constraints imposed by each vertex type:
- 56. CSP in computer vision: 4D Cities G. Schindler, F. Dellaert, and S.B. Kang, Inferring Temporal Order
- 57. CSP in computer vision: 4D Cities Goal: reorder images (columns) to have as few violations as
- 58. CSP in computer vision: 4D Cities Goal: reorder images (columns) to have as few violations as
- 60. Скачать презентацию

























































Рынок подержанных автомобилей в РФ
ТОТ актуал
Презентация на тему Николай Николаевич Носов
Управление человеческими ресурсами. Оплата и стимулирование труда. (Тема 9)
Фракталы вокруг нас
Использование дипольного акустического каротажа для оценки параметров пор и трещин карбонатных коллекторов
Административное право как отрасль, как наука, как учебная дисциплина
Оснащение новым оборудованием операционного блока ГБУЗ СО ТГБ № 4
Наше питание 3 класс
Социально-экономическое обоснование строительства Перинатального центра
Презентация на тему Религия в современном мире
Блок очистки этанизированной ШФЛУ от углекислого газа.
Значение периодического закона Д.И Менделеева
Агапизм - это гуманизм
Стратегические цели и коммерческая логика в сделках M&A
ВОЛНА ЛЮБВИ
Сын земли Зауральской
Презентация на тему Московська держава за Івана Грозного
Линейная перспектива. Урок изобразительного искусства
Интерактивное занятие Летний пейзаж
Пространственная модель ДНК
Методическое сопровождение дисциплины Материаловедение при подготовке по специальности дизайн
Questel databases Information & Analytical Solution Использование для патентных исследований, конкурентной разведки, маркетинговых исследований, оцен
Презентация по английскому I LOVE FOOD
Автоматизация сети NGN на основе протокола RADIUS
Основные особенности нового закона об образовании
Времена года. День святого Валентина
Парад студенчества 2018