Содержание
- 2. «В мире нет места для некрасивой математики» Г. Харди «Все есть число» Пифагор
- 3. Гипотеза исследования: Выкладывая различные правильные многоугольники, мы получаем разные классы многоугольных чисел. Предположительно от фигурных чисел
- 4. ЦЕЛЬ: Убедиться в практической значимости фигурных чисел ЗАДАЧИ: Расширить круг знаний от теории чисел, об открытиях
- 5. Из истории: Еще задолго до нашей эры ученые, комбинируя натуральные числа, составили из них затейливые ряды,
- 6. Фигурные числа – общее название чисел, связанных с той или иной геометрической фигурой. Это историческое понятие
- 7. Треугольные числа Треугольное число – это число кружков, которые могут быть расставлены в форме равностороннего треугольника.
- 8. Какой же вид имеют треугольные числа? Заметим, что 1 = 1 3 = 1 + 2
- 9. Графическое правило получения треугольного числа: Каждое следующее число получается из предыдущего путем сложения 1+2=3 3+3=6 6+4=10
- 10. Кроме треугольных чисел существуют также числа квадратные, пятиугольные, шестиугольные и т. п. Они связаны соответственно с
- 11. Решение примера! Чему равно треугольное число с номером 35? ½*35*(35+1)=1/2*35*36=630 Чему равно треугольное число с номером
- 12. А вы решите? Задача: Шары уложили в равносторонний треугольник, в котором 25 рядов. Сколько потребовалось шаров?
- 13. Используемая литература Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона http://dic.academic.ru/contents.nsf/brokgauz_efron/ Задачи на смекалку: Учебник для 5
- 15. Скачать презентацию