Содержание

Слайд 2

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (1)

Клермонтский отчет:
... сбор, интеграция и

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (1) Клермонтский отчет:
анализ данных больше не считаются расходами на ведение бизнеса; данные – это ключ к достижению эффективности и прибыльности бизнеса. В результате быстро развивается индустрия, поддерживающая анализ данных

Слайд 3

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (2)

К концу прошлого века аналитические

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (2) К концу
средства баз данных можно было пересчитать по пальцам одной руки
IBM DB2, Teradata, Sybase IQ, Oracle, частично Microsoft SQL Server
только в DB2 и Teradata поддерживалась архитектура sharing-nothing
только в Sybase IQ использовалось поколоночное хранение таблиц

Слайд 4

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (3)

C начала 2000-х активизировалось направление

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (3) C начала
Data Warehouse Appliance или Analytic Appliance
аббревиатура DWAA
Основная цель - создание аппаратно-программных средств,
существенно более дешевых, чем у предлагаемых поставщиками универсальных СУБД, но при этом
обеспечивающих большую производительность и масштабируемость при работе со сверхбольшими хранилищами данных

Слайд 5

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (4) Аналитические параллельные СУБД (1)

Направление DWAA

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (4) Аналитические параллельные
появилось еще в 1980-е гг.
Соответствующие пионерские продукты были созданы в компании Britton Lee Inc., которая в 1989 г. была сначала
переименована в ShareBase Corporation, а затем
поглощена компанией Teradata, которая к этому времени тоже придерживалась подхода DWAA

Слайд 6

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (5) Аналитические параллельные СУБД (2)

Аппаратно-программное решение,

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (5) Аналитические параллельные
основанное на ассоциативной адресации элементов хранения данных, имелось у компании ICL
Content Addressable File Store
Однако на рынке систем поддержки хранилищ данных на основе подхода DWAA с тех пор осталась только Teradata

Слайд 7

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (6) Аналитические параллельные СУБД (3)

Возрождение направления

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (6) Аналитические параллельные
DWAA в начале 2000-х связано с ростом заинтересованности компаний в недорогих и эффективных решениях для поддержки хранилищ данных и их анализа
Стали возникать софтверные стартапы, первым из которых стала компания Netezza

Слайд 8

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (7) Аналитические параллельные СУБД (4)

Эффективное DWAA-решение

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (7) Аналитические параллельные
на основе
программируемых вентильных матриц (Field Programmable Gate Array, FPGA) и
процессоров PowerPC
Использование FPGA в контроллерах магнитных дисков позволяет осуществлять "на лету" первичную фильтрацию данных
Применение PowerPC вместо Intel (по утверждению компании) позволяет снизить энергопотребление и расходы на охлаждение

Слайд 9

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (8) Аналитические параллельные СУБД (5)

С тех

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (8) Аналитические параллельные
пор появилось еще около десяти новых компаний, ориентирующихся на разработку DWAA с применением почти всегда
разновидностей массивно-параллельной архитектуры (MPP)
"sharing-nothing"
Vertica Systems
MPP,
поколоночное хранение таблиц

Слайд 10

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (9) Аналитические параллельные СУБД (6)

DATAllegro Inc.

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (9) Аналитические параллельные

недавно поглощена Microsoft
проект Madison, ставший основой SQL Server 2008 R2 Parallel Data Warehouse
MPP
основана на использовании СУБД Ingres
тем самым, таблицы хранятся по строкам

Слайд 11

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (10) Аналитические параллельные СУБД (7)

Greenplum
MPP
система основана

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (10) Аналитические параллельные
на использовании СУБД PostgreSQL
тем самым, таблицы хранятся по строкам
Aster Data Systems
MPP
таблицы хранятся по строкам
Kognitio
MPP
таблицы хранятся по строкам

Слайд 12

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (11) Аналитические параллельные СУБД (8)

EXASOL AG
MPP
поколоночное

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (11) Аналитические параллельные
хранение таблиц
Calpont Corporation
MPP, поколоночное хранение таблиц
система (InfiniDB) внешне схожа с MySQL
Dataupia Corporation
MPP
таблицы хранятся по строкам

Слайд 13

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (12) Аналитические параллельные СУБД (9)

Infobright
поколоночное хранение

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (12) Аналитические параллельные
таблиц
система основана на MySQL
ориентирована на использование многоядерных процессоров
массивный параллелизм не используется
Kickfire
поколоночное хранение таблиц
используется специальная аппаратура, ускоряющая выполнение SQL-запросов
система создана на основе MySQL
не основана на массивно-параллельной архитектуре

Слайд 14

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (13) Аналитические параллельные СУБД (10)

Подход DWAA

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (13) Аналитические параллельные
проникает и в продукты основных поставщиков SQL-ориентированных СУБД
Разаботка компании DATAllegro стала основой массивно-параллельного варианта Microsoft SQL Server
SQL Server 2008 R2 Parallel Data Warehouse
Oracle обеспечивает специализированное массивно-параллельное хранилище табличных данных Oracle Exadata Storage Server
позволяющее значительно ускорить работу основной СУБД

Слайд 15

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (14) Аналитические параллельные СУБД (11)

У разных

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (14) Аналитические параллельные
решений категории DWAA имеются свои интересные технические особенности, заслуживающие более глубокого обсуждения, анализа и сравнения
Их можно классифицировать и сравнивать по разным критериям
Однако это не является целью доклада
Некоторую попытку такого анализа представляет собой обзор
Richard Hackathorn, Colin White. Data Warehouse Appliances: Evolution or Revolution?
http://www.beyeresearch.com/study/4639
Значительный рост интереса к направлению DWAA, к специализированным СУБД вообще и к СУБД Vertica в частности вызвала статья
Майкл Стоунбрейкер, Угур Кетинтемел. Один размер пригоден для всех: идея, время которой пришло и ушло
http://citforum.ru/database/articles/one_size_fits_all/

Слайд 16

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (15) При чем здесь MapReduce? (1)

Сосредоточимся

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (15) При чем
на частном, но очень важном в настоящее время вопросе взаимоотношений технологий массивно-параллельных аналитических СУБД и MapReduce
Контекст DWAA является естественным, поскольку большинство СУБД, созданных на основе подхода DWAA, являются массивно-параллельными без использования общих ресурсов
Системы создавались в расчете на использование в кластерной аппаратной архитектуре, и они сравнительно легко могут быть перенесены в "облачную" среду динамически конфигурируемых кластеров

Слайд 17

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (16) При чем здесь MapReduce? (2)

Появление

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (16) При чем
"родной" для "облачной" среды технологии MapReduce и в особенности
энтузиазм по части ее использования, проявленный многими потенциальными пользователями параллельных СУБД,
очень озаботили представителей направления DWAA
Сначала авторитетные представители сообщества баз данных и одновременно активные сторонники подхода DWAA Майкл Стоунбрейкер и Дэвид Девитт старались убедить общественность в том, что MapReduce
это технология, уступающая технологии параллельных баз данных по всем статьям

Слайд 18

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (17) При чем здесь MapReduce? (3)

Потом

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (17) При чем
была проведена серия экспериментов, продемонстрировавшая, что при решении типичных простых аналитических задач MapReduce
уступает в производительности не только поколоночной СУБД Vertica, но и традиционной массивно-параллельной СУБД с хранением таблиц по строкам
Майкл Стоунбрейкер и др. Сравнение подходов к крупномасштабному анализу данных
http://citforum.ru/database/articles/mr_vs_dbms/
Доводы и результаты экспериментов были весьма солидными и убедительными, и
вряд ли кто-нибудь из людей, знакомых с обеими технологиями, сомневается в том, что
MapReduce не вытеснит параллельные СУБД, и что
эти технологии будут благополучно сосуществовать в "облаках" и в среде кластерных архитектур вообще

Слайд 19

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (18) При чем здесь MapReduce? (4)

Однако

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (18) При чем
возникает другой вопрос:
нет ли в технологии MapReduce каких-либо положительных черт, которых не хватает параллельным СУБД?
Можно ли каким-либо образом добавить эти черты в параллельные СУБД, сохранив их основные качества:
декларативный доступ на языке SQL,
оптимизацию запросов и т.д.
Понятно, что у параллельных СУБД имеется масса положительных черт, которыми не обладает MapReduce, но похоже, что добавление их к MapReduce
изменило бы суть этой технологии, превратив ее в технологию параллельных СУБД

Слайд 20

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (19) При чем здесь MapReduce? (5)

На

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (19) При чем
эти два вопроса удалось получить положительный ответ
В нескольких проектах, связанных с направлением DWAA, удалось воспользоваться такими преимуществами MapReduce, как
масштабируемость до десятков тысяч узлов,
отказоустойчивость,
дешевизна загрузки данных,
возможность использования явно написанного кода, который хорошо распараллеливается
Ни в одном проекте не удалось воспользоваться сразу всеми этими преимуществами, но имеющиеся достижения позволяют
добавить в параллельные СУБД важные качества, которыми они до сих по не обладали

Слайд 21

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (20) При чем здесь MapReduce? (6)

Рассмотрим

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (20) При чем
три подхода к интеграции технологий MapReduce и параллельных СУБД, предложенных и реализованных специалистами
компаний Greenplum и Aster Data
университетов Yale и Brown
компании Vertica,
которые можно было бы назвать:
MapReduce внутри параллельной СУБД
СУБД внутри среды MapReduce и
MapReduce сбоку от параллельной СУБД

Слайд 22

23 апреля 2010 г.

Корпоративные базы данных 2010

Введение (21) При чем здесь MapReduce? (7)

Первый

23 апреля 2010 г. Корпоративные базы данных 2010 Введение (21) При чем
подход ориентирован на поддержку написания и выполнения хранимых на стороне сервера баз данных пользовательских функций, которые хорошо распараллеливаются в кластерной среде
используется преимущество MapReduce по применению явно написанного кода и его распараллеливанию
Второй подход направлен на использование MapReduce в качестве инфраструктуры параллельной СУБД, в качестве базовых компонентов которой используются традиционные не параллельные СУБД
применение MapReduce позволяет добиться неограниченной масштабируемости получаемой системы и ее отказоустойчивости на уровне выполнения запросов
При применении третьего подхода MapReduce используется для выполнения процедуры ETL над исходными данными до их загрузки в систему параллельных баз данных
используется преимущество MapReduce в отношении дешевой загрузки данных до их обработки

Слайд 23

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (1)

Программная модель

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
MapReduce была придумана несколько лет тому назад в компании Google, и там же была выполнена
первая реализация этой модели на основе распределенной файловой системы GFS (Google File System)
Эта реализация активно используется в программных продуктах самой Google, но является
сугубо проприетарной и недоступна для использования вне Google

Слайд 24

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (2)

Свободно доступная

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
реализация Hadoop MapReduce была выполнена в проекте Hadoop сообщества Apache
Она основана на использовании распределенной файловой системы HDFS (Hadoop Distributed File System)
Реальную популярность MapReduce принесла именно реализация Hadoop в силу своей доступности и открытости
Широкое использование Hadoop MapReduce в различных исследовательских и исследовательских проектах приносит несомненную пользу этой системе,
стимулируя разработчиков к ее постоянному совершенствованию

Слайд 25

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (3)

Однако реализация

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
Hadoop MapReduce полностью основана на спецификациях Google, и поэтому каноническим описанием технологии была и остается статья
Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters
http://labs.google.com/papers/mapreduce.html
Заметим, что в документации Hadoop MapReduce используется несколько отличная терминология
В этой части доклада из уважения к первенству Google используются оригинальные термины,
в следующих разделах, там где будет иметься в виду конкретно реализация Hadoop MapReduce, будет использоваться терминология Hadoop

Слайд 26

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (3) Общая модель

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
программирования MapReduce (1)

Вычисления производятся
над множествами входных пар "ключ-значение", и
в результате каждого вычисления также производится
некоторое множество результирующих пар "ключ-значение"
Для представления вычислений в среде MapReduce используются две основные функции:
Map и
Reduce
Обе функции явно кодируются разрабочиками приложений в среде MapReduce

Слайд 27

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (4) Общая модель

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
программирования MapReduce (2)

Функция Map в цикле обрабатывает каждую пару из множества входных пар и производит множество промежуточных пар "ключ-значение"
Среда MapReduce групирует все промежуточные значения с одним и тем же ключом I и передает их функции Reduce.
Функция Reduce получает значение ключа I и множество значений, связанных с этим ключом
В типичных ситуациях каждая группа обрабатывается (в цикле) таким образом, что в результате одного вызова функции образуется не более одного результирующего значения

Слайд 28

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (5) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (1)

Реализации MapReduce от Google и Hadoop ориентированы на использование в кластерной распределенной среде со следующими основными характеристиками:
узлы среды выполнения MR-приложений представляют собой компьютеры общего назначения с операционной системой Linux;
используется стандартное сетевое оборудование с адаптерами, рассчитанными на скорости передачи в 100 мегабит в секунду или 1 гигабит в секунду,
но средняя пропускная способность существенно ниже;
кластер состоит из сотен или тысяч машин, так что вполне вероятны отказы отдельных узлов;
для хранения данных используются недорогие дисковые устройства, подключенные напрямую к отдельным машинам;
для управления данными, хранящимися на этих дисках, используется распределенная файловая система;
пользователи представляют свои задания в систему планирования; каждое задание состоит из некоторого набора задач, которые отображаются планировщиком на некоторый набор узлов кластера

Слайд 29

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (6) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (2) Выполнение MR-приложения (1)

Вызовы Map распределяются по нескольким узлам кластера путем разделения входных данных на M непересекающихся групп (split)
Входные группы могут параллельно обрабатываться на разных машинах
Вызовы Reduce распределяются путем разделения пространства промежуточных ключей на R частей с использованием некоторой функции разделения
например, функции хэширования
Число разделов R и функция разделения задаются пользователем

Слайд 30

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (7) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (3) Выполнение MR-приложения (2)

Выполнение MR-программы происходит следующим образом
Сначала среда MapReduce расщепляет входной файл на M частей,
размер которых может задаваться пользователем
Затем сразу в нескольких узлах кластера запускается основная программа MapReduce
Один из экземпляров этой программы играет специальную роль и называется распорядителем (master)
Остальные экземпляры являются исполнителями (worker),
которым распорядитель назначает работу
Распорядитель должен назначить исполнителям для выполнения M задач Map и R задач Reduce

Слайд 31

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (8) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (4) Выполнение MR-приложения (3)

Исполнитель задачи Map
читает содержимое соответствующей группы,
разбирает пары "ключ-значение" входных данных и
передает каждую пару в определенную пользователем функцию Map
Промежуточные пары "ключ-значение", производимые функцией Map, буферизуются в основной памяти
Периодически буферизованные пары, разделяемые на R областей на основе функции разделения, записываются в локальную дисковую память исполнителя
Координаты этих сохраненных на диске буферизованных пар отсылаются распорядителю, который,
передает эти координаты исполнителям задачи Reduce
i-ый Reduce-исполнитель снабжается координатами всех i-ых областей буферизованных пар, произведенных всеми M Map-исполнителями

Слайд 32

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (9) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (5) Выполнение MR-приложения (4)

После получения этих координат исполнитель задачи Reduce с использованием механизма RPC
переписывает данные с локальных дисков исполнителей задачи Map в свою память или на локальный диск
После переписи всех промежуточных данных выполняется их сортировка по значениям промежуточного ключа
для образования групп с одинаковым значением ключа
Если объем промежуточных данных слишком велик для выполнения сортировки в основной памяти,
используется внешняя сортировка

Слайд 33

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (10) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (5) Выполнение MR-приложения (4)

Далее Reduce-исполнитель организует цикл по отсортированным промежуточным данным и для каждого уникального значения ключа
вызывает пользовательскую функцию Reduce с передачей ей в качестве аргумента значения ключа и соответствующего множества значений
Результирующие пары функции Reduce добавляются в окончательный результирующий файл данного Reduce-исполнителя
После завершения всех задач Map и Reduce распорядитель активизирует программу пользователя, вызывавшую MapReduce

Слайд 34

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (11) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (6) Выполнение MR-приложения (5)

После успешного завершения выполнения задания MapReduce результаты размещаются в R файлах распределенной файловой системы
имена этих результирующих файлов задаются пользователем
Обычно не требуется объединять их в один файл, потому что часто полученные файлы используются в качестве входных
для запуска следующего MR-задания или
в каком-либо другом распределенном приложении, которое может получать входные данные из нескольких файлов

Слайд 35

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (12) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (7) Отказоустойчивость (1) Отказ исполнителя (1)

Распорядитель периодически посылает каждому исполнителю контрольные сообщения
Если некоторый исполнитель не отвечает на такое сообщение в течение некоторого установленного времени,
распорядитель считает его вышедшим из строя
В этом случае все задачи Map, уже выполненные и еще выполнявшиеся этим исполнителем,
переводятся в свое исходное состояние, и
можно заново планировать их выполнение другими исполнителями
Аналогично распорядитель поступает со всеми задачами Reduce, выполнявшимися отказавшим исполнителем к моменту отказа

Слайд 36

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (13) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (8) Отказоустойчивость (2) Отказ исполнителя (2)

Завершившиеся задачи Map выполняются повторно по той причине, что
их результирующие пары сохранялись на локальном диске отказавшего исполнителя
и поэтому недоступны в других узлах
Завершившиеся задачи Reduce повторно выполнять не требуется, поскольку
их результирующие пары сохраняются в глобальной распределенной файловой системе

Слайд 37

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (14) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (9) Отказоустойчивость (3) Отказ исполнителя (3)

Если некоторая задача Map выполнялась исполнителем A, а потом выполняется исполнителем B, то
об этом факте оповещаются все исполнители, выполняющие задачи Reduce
Любая задача Reduce, которая не успела прочитать данные, произведенные исполнителем A,
после этого будет читать данные от исполнителя B

Слайд 38

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (15) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (10) Отказоустойчивость (4) Отказ распорядителя (1)

В реализациях MapReduce от Google и Hadoop какая-либо репликация распорядителя не производится
Поскольку распорядитель выполняется только в одном узле кластера, его отказ маловероятен, и если он случается, то
аварийно завершается все выполнение MapReduce
Однако отмечается, что несложно организовать периодический сброс в распределенную файловую систему всего состояния распорядителя, чтобы в случае отказа можно было
запустить его новый экземпляр в другом узле с данной контрольной точки

Слайд 39

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (16) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (11) Отказоустойчивость (5) Семантика при наличии отказов (1)

Если обеспечиваемые пользователями функции Map и Reduce являются детерминированными
т.е. всегда выдают одни и те же результаты при одинаковых входных данных,
то при их выполнении в среде распределенной реализации MapReduce при любых условиях обеспечивает тот же результат, как
при последовательном выполнении всей программы при отсутствии каких-либо сбоев
Это свойство обеспечивается за счет атомарности фиксации результатов задач Map и Reduce

Слайд 40

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (17) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (12) Отказоустойчивость (6) Семантика при наличии отказов (2)

Каждая выполняемая задача записывает свои результаты в частные временные файлы
Задача Reduce производит один такой файл, а задача Map – R файлов, по одной на каждую задачу Reduce
По завершении задачи Map исполнитель посылает распорядителю сообщение, в котором указываются имена R временных файлов
При получении такого сообщения распорядитель запоминает эти имена файлов в своих структурах данных
Повторные сообщения о завершении одной и той же задачи Map игнорируются

Слайд 41

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (18) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (13) Отказоустойчивость (7) Семантика при наличии отказов (3)

При завершении задачи Reduce ее исполнитель атомарным образом переименовывает временный файл результатов в окончательный файл
Если одна и та же задача Reduce выполняется несколькими исполнителями, то
для одного и того же окончательного файла будет выполнено несколько операций переименования
Если в используемой распределенной файловой системе операция переименования является атомарной, то
в результате в файловой системе сохранятся результаты только какого-либо одного выполнения задачи Reduce

Слайд 42

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (19) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (14) Резервные задачи (1)

Чаще всего к увеличению общего времени выполнения задания MapReduce приводит наличие "отстающих" ("straggler")
узлов кластера, в которых выполнение одной из последних задач Map или Reduce занимает необычно долгое время
например, из-за некритичной неисправности дискового устройства
Для смягчения проблемы "остающих" в MapReduce применяется следующий общий механизм

Слайд 43

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (20) Реализация в

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
распределенной среде (15) Резервные задачи (2)

Когда задание близится к завершению, для всех еще не завершившихся задач назначаются
дополнительные, резервные исполнители
Задача считается выполненной,
когда завершается ее первичное или резервное выполнение
Этот механизм настраивается таким образом, чтобы потребление вычислительных ресурсов возрастало не более чем на несколько процентов
В результате удается существенно сократить время выполнения крупных MR-заданий

Слайд 44

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (21) Расширенные возможности

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
(1) Функция-комбинатор (1)

В некоторых случаях в результатах задачи Map содержится
значительное число повторящихся значений промежуточного ключа,
а определенная пользователем задача Reduce
является коммутативной и ассоциативной
В таких случаях пользователь может определить дополнительную функцию-комбинатор (Combiner),
выполняющую частичную агрегацию таких данных до их передачи по сети
Функция Combiner выполняется на той же машине, что и задача Map

Слайд 45

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (22) Расширенные возможности

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
(2) Функция-комбинатор (2)

Обычно для реализации функции Combiner используется тот же самый код, что и для реализации функции Reduce
Единственное различие между функциями Combiner и Reduce состоит в способе работы с их результирующими данными
Результаты функции Reduce записываются в окончательный файл результатов
Результаты же функции Combiner помещаются в промежуточные файлы, которые впоследствии пересылаются в задачи Reduce

Слайд 46

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (23) Расширенные возможности

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
(3) Форматы входных и результирующих данных (1)

В библиотеке MapReduce поддерживается возможность чтения входных данных в нескольких разных форматах
Например, в режиме "text" каждая строка трактуется как пара "ключ-значение", где ключ – это смещение до данной строки от начала файла, а значение – содержимое строки
В другом распространенном формате входные данные представляются в виде пар "ключ-значение", отсортированных по значениям ключа
В каждой реализации формата входных данных известно, каким образом следует расщеплять данные на осмысленные части, которые обрабатываются отдельными задачами Map
например, данные формата "text" расщепляются только по границами строк

Слайд 47

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce: модель и реализации (24) Расширенные возможности

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce: модель и реализации
(4) Форматы входных и результирующих данных (2)

Пользователи могут добавить к реализации собственные форматы входных данных, обеспечив новую реализацию интерфейса reader
в реализации Hadoop – RecordReader
Reader не обязательно должен читать данные из файла,
можно легко определить reader, читающий данные из базы данных или из некоторой структуры в виртуальной памяти.
Аналогичным образом, поддерживаются возможности генерации данных в разных форматах, и
имеется простая возможность определения новых форматов результирующих данных

Слайд 48

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (1)

Очевидны преимущества

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
клиент-серверных организаций СУБД: в такой архитектуре сервер баз данных поддерживает крупную базу данных, которая
сохраняется в одном экземпляре и
доступна большому числу приложений, выполняемых прямо на стороне клиентов или в промежуточных серверах приложений
Однако даже при использовании реляционной
или, правильнее, SQL-ориентированной
организации баз данных, когда от клиентов на сервер баз данных отправляются высокоуровневые декларативные запросы, в обратную сторону, от сервера к клиенту,
пересылаются результирующие данные, вообще говоря, произвольно большого объема

Слайд 49

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (2)

Естественно, возникает

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
вопрос: не окажется ли дешевле,
чем пересылать данные с сервера на клиент для их дальнейшей обработки,
переместить требуемую обработку данных на сервер, ближе к самим данным
В явном виде идея перемещения вычислений на сторону сервера была высказана в статье Лоуренса Роува и Майкла Стоунбрейкера
Lawrence A. Rowe, Michael R. Stonebraker. The POSTGRES Data Model
http://www.vldb.org/conf/1987/P083.PDF
Намеки на эту идею можно найти и в более ранних статьях М. Стоунбрейкера и др.,
еще не имевших непосредственного отношения к СУБД Postgres

Слайд 50

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (3)

Поддержка определяемых

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
пользователями хранимых процедур, функций и методов, типов данных и триггеров появилась во всех развитых SQL-ориентированных СУБД
Соответствующие языковые средства специфицированы в стандарте языка SQL
Более того, возникла новая проблема выбора – одну и ту же функциональность приложения можно реализовать на стороне сервера, на сервере приложений и на клиенте
Однозначных методологий и рекомендаций, способствующих простому выбору, не существует
Например, очевидно, что если услугами одного сервера пользуется несколько приложений, то
перегрузка сервера хранимыми процедурами и функциями, реализующими функциональность одного приложения, может нанести ущерб эффективности других приложений

Слайд 51

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (4)

Тем не

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
менее, во всех традиционных серверных организациях СУБД возможность переноса вычислений на сторону сервера существует и не очень сложно реализуется
Однако в параллельных СУБД дела обстоят гораздо хуже
в особенности, в СУБД категории sharing-nothing
Выполнение SQL-запросов распараллеливается автоматически оптимизатором запросов
Но оптимизатор запросов не может распараллелить определенную пользователем процедуру или функцию,
если она написана не на SQL,
а на одном из традиционных языков программирования

Слайд 52

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (5)

Технически можно

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
было бы такие процедуры и функции вообще не распараллеливать, а выполнять в каком-либо одном узле кластера
Но тогда
в этом узле пришлось бы собрать все данные, требуемые для выполнения процедуры или функции, для чего потребовалась бы
массовая пересылка данных по сети, и
это свело бы на нет все преимущества параллельных СУБД,
производительность которых основывается именно на параллельном выполнении

Слайд 53

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (6)

С другой

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
стороны, невозможно обязать распараллеливать свои программы самих пользователей, определяющих хранимые процедуры или функции
например, на основе библиотеки MPI
Во-первых, это слишком сложное занятие для разработчиков приложений баз данных, которые часто вообще не являются профессиональными программистами
Во-вторых, при таком явном параллельном программировании требовалось бы явным же образом управлять распределением данных по узлам кластера

Слайд 54

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (7)

Несмотря на

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
эти трудности, какая-то поддержка механизма распараллеливаемых определяемых пользователями процедур и функций в параллельных аналитических СУБД все-таки требуется
без этого аналитики вынуждены выполнять анализ данных на клиентских рабочих станциях,
постоянно пересылая на них из центрального хранилища данных данные весьма большого объема
другого способа работы у них просто нет
Как показывает опыт двух производственных разработок, для обеспечения возможностей серверного программирования в массивно-параллельной среде систем баз данных
с пользой может быть применена модель MapReduce

Слайд 55

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (8)

Речь идет

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
о параллельных аналитических СУБД
Greenplum Database компании Greenplum и
nCluster компании Aster Data Systems
Общим в подходах обеих компаний является то, что
модель MapReduce реализуется внутри СУБД, и
возможностями этих реализаций могут пользоваться разработчики аналитических приложений
Различие состоит в том, как можно пользоваться возможностями MapReduce:
в Greenplum Database – наряду с SQL,
а в nCluster – из SQL

Слайд 56

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (9) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (1)

Сначала немного поговорим об общей философии компании Greemplum, приведшей ее, в частности, к идее поддержки технологии MapReduce наряду с технологией SQL
По мнению идеологов Greemplum и основных архитекторов Greenplum Database
Джозеф Хеллерстейн и др. МОГучие способности: новые приемы анализа больших данных
http://citforum.ru/database/articles/mad_skills/
возрастающий уровень востребованности хранилищ данных и оперативного анализа данных, возможность и целесообразность использования требуемых аппаратных средств в масштабах отдельных подразделений компаний приводят к потребности пересмотра "ортодоксального" подхода к организации хранилищ данных

Слайд 57

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (10) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (2) MAD Skills (1)

Предлагается и реализуется новый подход к анализу данных, который идеологи (и маркетологи!) компании связывают с аббревиатурой MAD
Интересная игра слов, которую трудно выразить на русском языке
Mad применительно к технологии означает, что эта технология слегка безумна и уж во всяком случае не ортодоксальна
С другой стороны, mad skills означает блестящие способности, а значит, предлагаемая технология, по мнению ее творцов, обладает новыми полезнейшими качествами
Но в Greenplum MAD – это еще и аббревиатура от
magnetic,
agile и
deep

Слайд 58

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (11) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (3) MAD Skills (2)

Magnetic (магнетичность) применительно к хранилищу данных означает, что оно должно быть "притягательным" по отношению к новым источникам данных, появляющимся в организации
Данные из новых источников должны легко и просто включаться в хранилище данных с пользой для аналитиков
При использовании традиционного ("ортодоксального") подхода к организации хранилища данных, для подключения нового источника данных требуется разработка и применение соответствующей процедуры ETL, а возможно, и изменение схемы хранилища данных,
в результате чего подключение нового источника данных часто затягивается на месяца, а иногда и вовсе кончается ничем

Слайд 59

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (12) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (4) MAD Skills (3)

Agile (гибкость) – это предоставляемая аналитикам возможность простым образом и в быстром темпе
воспринимать,
классифицировать,
производить и
перерабатывать данные
Для этого требуется база данных, логическая и физическая структура и содержание которой могут постоянно и быстро изменяться
В отличие от этого, традиционным хранилищам данных свойственна жесткость, связанная с потребностью долгосрочного тщательного проектирования и планирования

Слайд 60

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (13) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (5) MAD Skills (4)

Deep (основательность) означает, что аналитикам должны предоставляться средства выполнения произвольно сложных статистических алгоритмов над всеми данными, находящимися в хранилище данных,
без потребности во взятии образцов или выборок
Хранилище данных должно служить
как основательным репозиторием данных,
так и средой, поддерживающей выполнение сложных алгоритмов

Слайд 61

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (14) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (6) MAD Skills (5)

Более подробно рассмотрим один аспект MAD-аналитики, который привел к реализации системы с поддержкой интерфейсов и SQL, и MapReduce
Как считают разработчики Greenplum Database хозяевами будущего мира анализа данных должны стать аналитики
Фактически, на это направлены все аспекты MAD-аналитики
Но, в частности, это означает всяческую поддержку написания и использования в среде хранилища данных разнообразных аналитических алгоритмов

Слайд 62

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (15) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (7) MAD Skills (6)

Параллельная СУБД Greenplum Database делалась на основе СУБД PostgreSQL, являющейся законной наследницей Postgres
Помимо своих прочих достоинств, Postgres была первой расширяемой СУБД
Пользователи Postgres могли определять собственные
процедуры и функции,
типы данных и даже
методы доступа к структурам внешней памяти
Эти возможности расширений системы были переняты и развиты в PostgreSQL
Наряду с традиционным в Postgres языком C, для программирования серверных расширений в PostgreSQL можно использовать, в частности, популярные скриптовые языки
Perl и
Python

Слайд 63

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (16) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (8) MAD Skills (7)

В Greenplum Database на основе этих возможностей расширений системы обеспечена расширенная среда, позволяющая на уровне языка SQL оперировать такими математическими объектами, как векторы, функции и функционалы
Пользователи могут определять собственные статистические алгоритмы и в полуавтоматическом режиме распараллеливать их выполнение по данным в массивно-параллельной среде
что часто является очень нетривиальной задачей
Однако в любом случае при использовании такого подхода к анализу данных пользователям-аналитикам приходится иметь дело с декларативным языком SQL, а как считают идеологи Greenplum,
для многих аналитиков и статистиков SQL-программирование является обременительным и неудобным

Слайд 64

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (17) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (9) MAD Skills (8)

В качестве альтернативы аналитическому SQL-программированию в Greenplum Database обеспечивается полноправная реализация MapReduce, в которой
предоставляется доступ ко всем данным, сохраняемым в хранилище данных
При использовании MapReduce аналитики пишут собственный понятный для них процедурный код
можно использовать те же Perl и Python
и понимают, как будет выполняться их алгоритм в массивно-параллельной среде,
поскольку это выполнение опирается на простую модель MapReduce

Слайд 65

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (18) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (10) Реализация MapReduce в Greenplum Database (9)

Ядром системы является процессор потоков данных (Dataflow Engine)
Замена соответствующего компонента ядра PostgreSQL для обеспечения
массивно-параллельного выполнения запросов и
базовых функциональных возможностей, требуемых для поддержки модели MapReduce
В результате SQL-ориентированная СУБД и MapReduce работают с общим ядром, поддерживающим массивно-параллельную обработку данных,
и механизмы SQL и MapReduce обладают интероперабельностью

Слайд 66

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (18) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (10) Реализация MapReduce в Greenplum Database (9)

Функции Map и Reduce в среде Greenplum Database можно программировать на популярных скриптовых языках Python и Perl
Можно использовать развитые программные средства с открытыми кодами, содержащиеся в репозиториях
Python Package Index (PyPi) и
Comprehensive Perl Archive Network (CPAN)
В составе этих репозиториев находятся
средства анализа неструктурированного текста,
статистические инструментальные средства,
анализаторы форматов HTML и XML и
многие другие программные средства, потенциально полезные аналитикам

Слайд 67

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (19) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (11) Реализация MapReduce в Greenplum Database (10)

В среде Greenplum Database приложениям MapReduce обеспечивается доступ к данным,
хранящимся в файлах,
предоставляемым Web-сайтами и
даже генерируемым командами операционной системы
Доступ к таким данным не влечет накладных расходов, ассоциируемых с использованием СУБД:
блокировок,
журнализации,
фиксации транзакций и т.д.
С другой стороны, эффективный доступ к данным, хранимым в базе данных, поддерживается за счет выполнения MR-программ в ядре Greenplum Database
Это позволяет избежать расходов на пересылку данных

Слайд 68

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (20) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (12) Реализация MapReduce в Greenplum Database (11)

Архитектура Greenplum Database с равноправной поддержкой SQL и MapReduce позволяет смешивать стили программирования,
делать MR-программы видимыми для SQL-запросов и наоборот
Например, можно выполнять MR-программы над таблицами базы данных
Для этого всего лишь требуется указать MapReduce, что входные данные программы должны браться из таблицы
Поскольку таблицы баз данных Greenplum Database хранятся разделенными между несколькими узлами кластера,
первая фаза MAP выполняется внутри ядра СУБД прямо над этими разделами

Слайд 69

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (21) Greemplum –

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
MapReduce наравне с SQL (13) Реализация MapReduce в Greenplum Database (12)

Как и в автономных реализациях MapReduce, результаты выполнения MR-программ могут сохраняться в файловой системе
Но настолько же просто сохранить результирующие данные в базе данных с обеспечением транзакционной долговечности хранения этих данных
В дальнейшем эти данные могут анализироваться, например, с применением SQL-запросов
Запись результирующих данных в таблицы происходит параллельным образом и не вызывает лишних накладных расходов

Слайд 70

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (22) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (1)

У компании Aster Data имеется свой слоган Big Data, Fast Insight, который, по сути, означает то же самое
превращение массивно-параллельного хранилища данных в аналитическую платформу
И для этого тоже используется технология MapReduce, встроенная в СУБД
Эрик Фридман и др. SQL/MapReduce: практический подход к поддержке самоописываемых, полиморфных и параллелизуемых функций, определяемых пользователями
http://citforum.ru/database/articles/asterdata_sql_mr/
Однако, в отличие от Greenplum, эта технология применяется не для обеспечения альтернативного внешнего способа обработки данных, а
для реализации нового механизма
хорошо распараллеливаемых (по модели MapReduce),
самоописываемых и
полиморфных табличных функций,
определяемых пользователями и вызываемых из операторов выборки SQL

Слайд 71

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (23) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (2) Предпосылки и преимущества SQL/MapReduce (1)

По мнению основных разработчиков СУБД nCluster, декларативный язык SQL во многом ограничивает использование аналитических СУБД
С одной стороны, несмотря на постоянное наращивание аналитических возможностей этого языка, для многих аналитиков их оказывается недостаточно
С другой стороны, эти возможности постепенно становятся такими сложными и непонятными, что
зачастую становится проще написать процедурный код, решающий частную аналитическую задачу
Наконец, оптимизаторы запросов SQL-ориентированных СУБД постоянно отстают от развития языка, и планы сложных аналитических запросов могут быть весьма далеки от оптимальных,
что приводит к их недопустимо долгому выполнению, а иногда и аварийному завершению

Слайд 72

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (24) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (3) Предпосылки и преимущества SQL/MapReduce (2)

Эти проблемы частично решаются за счет поддержки в SQL-ориентированных СУБД механизма UDF
Такие функции позволяют пользователям решать внутри сервера баз данных свои прикладные задачи
путем написания соответствующего процедурного кода
Однако традиционные механизмы UDF разрабатывались в расчете на "одноузловые" СУБД, и
по умолчанию предполагается чисто последовательное выполнение UDF
Автоматическое распараллеливание последовательного кода в массивно-параллельной среде с разделением данных является
сложной нерешенной проблемой

Слайд 73

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (25) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (4) Предпосылки и преимущества SQL/MapReduce (3)

В Aster Data для обеспечения механизма естественно распаралле- ливаемых UDF разработана инфраструктура SQL/MapReduce,
поддерживаемая внутри SQL-ориентированной массивно-параллельной СУБД nCluster

Слайд 74

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (26) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (5) Предпосылки и преимущества SQL/MapReduce (4)

Организация среды SQL/MapReduce обеспечивает следующие возможности:
можно эффективно выполнять в "реляционном" стиле операции над таблицами с использованием SQL, а "нереляционные" задачи и оптимизации – возлагать на явно программируемые процедурные функции;
поскольку функции выполняются над согласованными данными из таблиц базы данных, обеспечивается согласованность вычислений;
оценочный (cost-based) оптимизатор может принимать решения о способе выполнения SQL-запросов, содержащих вызовы SQL/MapReduce-функций, на основе достоверной статистики данных;
пользователи nCluster могут формулировать SQL-запросы с использованием высокоуровневых средств анализа данных, воплощенных в SQL/MapReduce-функциях

Слайд 75

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (27) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (6) Предпосылки и преимущества SQL/MapReduce (5)

SQL/MapReduce-функции можно программировать как на традиционных языках программирования (Java, C#, C++), так и скриптовых языках (Python, Ruby)
Независимо от используемого языка программирования, эти табличные функции являются самоописываемыми и полиморфными
Одна и та же функция может принимать на вход таблицы с разными схемами
функция настраивается на конкретную схему входной таблицы на этапе формирования плана запроса, содержащего ее вызов
и выдавать таблицы также с разными схемами
функция сама сообщает планировщику запроса схему своего результата на этапе формирования плана запроса
Это свойство SQL/MapReduce-функций упрощает процедуру их регистрации в системе и способствует повторному использованию кода

Слайд 76

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (28) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (7) Предпосылки и преимущества SQL/MapReduce (6)

Синтаксические особенности определения SQL/MapReduce-функций и их семантика делают эти программные объекты естественным образом параллелизуемыми по данным:
во время выполнения для каждой функции образуются ее экземпляры, параллельно выполняемые в узлах, которые содержат требуемые данные
Вызовы функций подобны подзапросам SQL, что обеспечивает возможность композиции функций, при которой при вызове функции вместо спецификации входной таблицы можно задавать вызов другой функции
Наконец, внешняя эквивалентность вызова SQL/MapReduce-функции подзапросу позволяет
применять при формировании плана SQL-запроса с вызовами таких функций обычную оценочную оптимизацию на основе статистики, а также
динамически изменять порядок выполнения функций и вычисления настоящих SQL-подзапросов

Слайд 77

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (29) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (8) Реализация SQL/MapReduce (1) Синтаксис вызова (1)

Вызов SQL/MapReduce- функции может присутствовать только в качестве элемента списка ссылок на таблицы раздела FROM SQL-запроса
В разделе ON, который является единственным обязательным разделом вызова, указывается любой допустимый SQL/MapReduce-запрос
SQL-запрос, вызов SQL/MapReduce-функции или просто имя таблицы
Во время формирования плана запроса, содержащего вызов SQL/MapReduce-функции, схемой входной таблицы этого вызова считается схема результата запроса, указанного в разделе ON

Слайд 78

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (30) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (9) Реализация SQL/MapReduce (2) Синтаксис вызова (2)

Раздел PARTITION BY указывается только в вызовах SQL/MapReduce-функций над разделами
аналоге функции Reduce исходной модели MapReduce
В этом случае в разделе PARTITION BY указывается список выражений, на основе значений которых производится разделение таблицы, специфицированной в разделе ON

Слайд 79

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (31) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (10) Реализация SQL/MapReduce (3) Синтаксис вызова (3)

При наличии раздела PARTITION BY в вызове может содержаться и раздел ORDER BY, указывающий на потребность в сортировке входных данных до реального вызова функции
Наконец, вслед за разделом ORDER BY можно указать произвольное число дополнительных разделов со специальными аргументами
Имена этих разделов и значения аргументов передаются в SQL/MapReduce-функцию при ее инициализации

Слайд 80

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (32) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (11) Реализация SQL/MapReduce (4) Модель выполнения (1)

В среде SQL/MapReduce используется модель выполнения функций, являющаяся обобщением модели MapReduce
Функция SQL/MapReduce может быть
либо функцией над строками (row function),
либо функцией над разделами (partition function)
Функции первого типа является аналогами функций Map классической модели MapReduce, а функции второго типа – аналогами функций Reduce
Поскольку, как отмечалось ранее, в разделе ON вызова SQL/MapReduce-функции может содержаться вызов другой SQL/MapReduce-функции,
в среде SQL/MapReduce допускается любое число и любой порядок вызовов функций Map и Reduce,
а не только жесткая последовательность Map-Reduce, допускаемая классической моделью

Слайд 81

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (33) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (12) Реализация SQL/MapReduce (5) Модель выполнения (2)

При выполнении функции над строками каждая строка входной таблицы обрабатывается ровно одним экземпляром этой функции
С точки зрения семантики каждая строка обрабатывается независимо, поэтому входная таблица может разделяться по экземплярам функции произвольным образом,
что обеспечивает возможности параллелизма и масштабирования
Для каждой строки входной таблицы функция над строками может не производить ни одной строки, а может произвести несколько строк

Слайд 82

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (34) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (13) Реализация SQL/MapReduce (6) Модель выполнения (3)

При выполнении функции над разделами каждая группа строк, образованная на основе спецификации раздела PARTITION BY вызова функции, обрабатывается ровно одним экземпляром этой функции, и этот экземпляр получает все группу целиком
Если в вызове функции содержится раздел ORDER BY, то экземпляры функции получают разделы в уже упорядоченном виде
С точки зрения семантики каждый раздел обрабатывается независимо,
что обеспечивает возможности параллелизма на уровне разделов
Для каждого входного раздела функция над строками может не производить ни одной строки, а может произвести несколько строк

Слайд 83

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (35) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (14) Реализация SQL/MapReduce (7) Особенности реализации (1)

Для реализации SQL/MapReduce-функций можно использовать разные языки, но все они являются объектно-ориентированными
Каждая SQL/MapReduce-функция реализуется в виде отдельного класса, и при выработке плана выполнения SQL-запроса, содержащего вызовы таких функций, для каждого вызова образуется объект соответствующего класса с обращением к его методу-конструктору
инициализатору функции
Это обеспечивает настройку функции и получение требуемого описания ее результирующей таблицы

Слайд 84

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (36) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (15) Реализация SQL/MapReduce (8) Особенности реализации (2)

Взаимодействие оптимизатора запросов с инициализатором функции производится через специальный объект, называемый контрактом времени выполнения (Runtime Contract)
Анализируя вызов функции, оптимизатор выявляет
имена и типы данных столбцов входной таблицы, а также
имена и значения разделов дополнительных параметров
и соответствующим образом заполняет некоторые поля объекта-контракта, который затем передается инициализатору функции

Слайд 85

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (37) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (16) Реализация SQL/MapReduce (9) Особенности реализации (3)

Инициализатор завершает подготовку контракта путем заполнения его дополнительных полей, содержащих, в частности,
информацию о схеме результирующей таблицы,
и обращается к методу complete объекта-контракта
На основе готового контракта продолжается выработка плана выполнения запроса, и
этот контракт соблюдается при последующем выполнении SQL/MapReduce-функции всеми ее экземплярами

Слайд 86

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (38) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (17) Реализация SQL/MapReduce (10) Особенности реализации (4)

Наиболее важными методами интерфейсов классов для функций над строками и разделами являются методы OperateOnSomeRows и OperateOnPartition
При обращении к этим методам
реальном выполнении соответствующей функции
в качестве аргументов передаются
итератор над строками, для обработки которых вызывается функция, и
объект emitter, с помощью вызовов которого возвращаются результирующие строки

Слайд 87

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (39) Aster Data

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
– MapReduce как основа UDF (18) Реализация SQL/MapReduce (11) Особенности реализации (5)

Чтобы можно было начать использовать некоторую SQL/MapReduce-функцию, ее нужно инсталлировать
Для этого используется общий механизм инсталляции файлов, реализованный в nCluster
Этот механизм реплицирует файл во всех рабочих узлах системы
Далее проверяется, что этот файл содержит SQL/MapReduce-функцию, а также выясняются ее статические свойства:
является ли она функцией на строками или же над разделами,
содержит ли она вызовы комбинатора и т.д.

Слайд 88

23 апреля 2010 г.

Корпоративные базы данных 2010

MapReduce внутри параллельной СУБД (40)

Таким образом

23 апреля 2010 г. Корпоративные базы данных 2010 MapReduce внутри параллельной СУБД
в этих двух системах обеспечивается возможность развитого анализа данных поблизости от самих данных
Разработчики серверных аналитических приложений несколько ограничиваются моделью MapReduce
в большей степени в Greenplum Database, в меньшей – в nCluster,
но зато пользовательский процедурный код хорошо распараллеливается по данным в массивно-параллельной среде

Слайд 89

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (1)

В

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
статье Стоунбрейкера и др., посвященной сравнению эффективности технологий MapReduce и массивно-параллельных СУБД при решении аналитических задач, утверждалось,
что развитость и зрелость технологии параллельных СУБД категории sharing-nothing позволяет им обходиться стоузловыми кластерами для поддержки самых крупных сегодняшних аналитических баз данных петабайтного масштаба
Вместе с тем, особые качества масштабируемости и отказоустойчивости технологии MapReduce проявляются при использовании кластеров с тысячами узлов
Из этого делался вывод, что в обозримом будущем эти качества не являются настоятельно необходимыми для параллельных СУБД

Слайд 90

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (2)

Однако

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
спустя всего несколько месяцев появилась статья, в которой звучат уже совсем другие мотивы
Ави Зильбершац и др. HadoopDB: архитектурный гибрид технологий MapReduce и СУБД для аналитических рабочих нагрузок
http://citforum.ru/database/articles/hadoopdb/
В ней говорится, что в связи с ростом объема данных, которые требуется анализировать, возрастает и число приложений,
для поддержки которых нужны кластеры с числом узлов, больше ста
В то же время, имеющиеся в настоящее время параллельные СУБД не масштабируются должным образом до сотен узлов

Слайд 91

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (3)

Это

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
объясняется следующими причинами:
При возрастании числа узлов кластера возрастает вероятность отказов отдельных узлов, а массивно-параллельные СУБД проектировались в расчете на редкие отказы
Современные параллельные СУБД рассчитаны на однородную аппаратную среду
все узлы кластера обладают одной и той же производительностью,
а при значительном масштабировании полной однородности среды добиться почти невозможно.
До последнего времени имелось очень небольшое число систем аналитических баз данных, для достижения требуемой производительности которых требовались кластеры с более чем несколькими десятками узлов
Поэтому существующие параллельные СУБД просто не тестировались в более масштабной среде, и при их дальнейшем масштабировании могут встретиться непредвиденные технические проблемы

Слайд 92

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (4)

Требуемые

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
характеристики масштабируемости и отказоустойчивости может обеспечить технология MapReduce, поскольку
она с самого начала разрабатывалась с расчетом на масштабирование до тысяч узлов,
и ее реализация от Google эффективно используется для поддержки внутренних операций этой компании
Несмотря на то, что изначально технология MapReduce ориентировалась на обработку неструктурированных текстовых данных,
известны показательные примеры ее использования и для обработки огромных объемов структурированных данных

Слайд 93

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (5)

Однако

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
объективно при обработке структурированных данных MapReduce не может конкурировать с параллельными СУБД по производительности,
что объясняется отсутствием схемы у обрабатываемых данных, индексов, оптимизации запросов и т.д.
В результате при выполнении многих типичных аналитических запросов MapReduce показывает производительность,
более чем на порядок уступающую производительности параллельных СУБД

Слайд 94

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (6)

В

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
проекте HadoopDB специалисты из университетов Yale и Brown предпринимают попытку создать гибридную систему управления данными,
сочетающую преимущества технологий и MapReduce, и параллельных СУБД
MapReduce обеспечивает коммуникационную инфраструктуру, объединяющую произвольное число узлов,
в которых выполняются экземпляры традиционной СУБД
Запросы формулируются на языке SQL, транслируются в среду MapReduce, и
значительная часть работы передается в экземпляры СУБД
Наличие MapReduce обеспечивает
масштабируемость и отказоустойчивость,
а использование в узлах кластера СУБД позволяет добиться
высокой производительности

Слайд 95

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (7) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (1)

Основой системы является Hadoop MapReduce
К ней добавлены компоненты компиляции поступающих в систему SQL-запросов, загрузки и каталогизирования данных, связи с СУБД и самих СУБД
При реализации всех компонентов системы максимально использовались пригодные для этого программные средства с открытыми исходными текстами

Слайд 96

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (8) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (2) Hadoop MapReduce (1)

Hadoop MapReduce опирается на распределенную файловую систему HDFS (Hadoop Distributed File System)
Файлы HDFS имеют блочную структуру, и блоки одного файла распределяются по узлам данных (DataNode)
Файловая система работает под централизованным управлением выделенного узла имен (NameNode), в котором поддерживаются метаданные о файлах
в том числе, об их размерах, о размещении блоков и их реплик и т.д.

Слайд 97

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (9) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (3) Hadoop MapReduce (2)

В самой среде Hadoop MapReduce поддерживаются один узел-распорядитель
в Hadoop он называется JobTracker
и много узлов-исполнителей
здесь TaskTracker
В узле JobTracker планируется выполнение MR-заданий, а также отслеживаются данные о загрузке узлов TaskTracker и доступных ресурсах
Каждое задание разбивается на задачи Map и Reduce, которые назначаются узлом JobTracker узлам TaskTracker
с учетом требований локальности данных и балансировки нагрузки

Слайд 98

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (10) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (4) Hadoop MapReduce (3)

Требование локальности удовлетворяется за счет того, что JobTracker пытается назначать каждую задачу Map тому узлу TaskTracker,
для которого данные, обрабатываемые этой задачей, являются локальными
Балансировка нагрузки достигается путем назначения задач всем доступным узлам TaskTracker
Узлы TaskTracker периодически посылают в узел JobTracker контрольные сообщения с информацией о своем состоянии

Слайд 99

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (11) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (5) Собственные компоненты HadoopDB (1) Коннектор БД (1)

Коннектор баз данных обеспечивает интерфейс между TaskTracker и независимыми СУБД, располагаемыми в узлах кластера
Этот компонент расширяет класс InputFormat и является частью соответствующей библиотеки
От каждого MR-задания в коннектор поступают SQL-запрос, а также параметры подключения к системе баз данных
указание драйвера JDBC,
размер структуры выборки данных и т.д.

Слайд 100

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (12) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (6) Собственные компоненты HadoopDB (2) Коннектор БД (2)

Теоретически коннектор обеспечивает подключение к любой JDBC-совместимой СУБД
Однако в других компонентах HadoopDB приходится учитывать специфику конкретных СУБД, поскольку для них требуется по-разному оптимизировать запросы
В исходных экспериментах использовалась реализация коннектора для PostgreSQL, а в позже уже упоминалась некоторая поколоночная система
В любом случае, для среды HadoopDB эта реализация обеспечивает естественное и прозрачное использование баз данных в качестве источника входных данных

Слайд 101

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (13) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (7) Собственные компоненты HadoopDB (3) Каталог (1)

В каталоге поддерживаются метаданные двух сортов:
параметры подключения к базе данных (ее месторасположение, класс JDBC-драйвера, учетные данные) и
описание наборов данных, содержащихся в кластере, расположение реплик и т.д.
Каталог сохраняется в формате XML в HDFS
К нему обращаются JobTracker и TaskTracker для выборки данных, требуемых для планирования задач и обработки данных

Слайд 102

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (14) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (8) Собственные компоненты HadoopDB (4) Загрузчик данных (1)

Обязанностями загрузчика данных являются:
глобальное разделение данных по заданному ключу при их загрузке из HDFS;
разбиение данных, хранимых в одном узле, на несколько более мелких разделов (чанков);
массовая загрузка данных в базу данных каждого узла с использованием чанков

Слайд 103

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (15) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (9) Собственные компоненты HadoopDB (5) Загрузчик данных (2)

Загрузчик данных состоит из компонентов GlobalHasher и LocalHasher
GlobalHasher запускает в Hadoop MapReduce специальное задание, в котором
читаются файлы данных HDFS и
производится их разделение на столько частей, сколько имеется рабочих узлов в кластере
Сортировка данных не производится
Затем LocalHasher в каждом узле копирует соответствующий раздел из HDFS в свою файловую систему,
разделяя его на чанки в соответствии с установленным в системе максимальным размером чанка

Слайд 104

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (16) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (10) Собственные компоненты HadoopDB (6) Загрузчик данных (3)

В GlobalHasher и LocalHasher используются разные хэш-функции,
обеспечивающие примерно одинаковые размеры всех чанков
Эти хэш-функции отличаются от хэш-функции, используемой в Hadoop MapReduce для разделения данных по умолчанию
Это способствует улучшению балансировки нагрузки

Слайд 105

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (17) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (11) Собственные компоненты HadoopDB (7) Планирование SQL (1)

Внешний интерфейс HadoopDB позволяет выполнять SQL-запросы
Компиляцию и подготовку планов выполнения SQL-запросов производит планировщик SMS (SMS Planner),
являющийся расширением планировщика Hive
Планировщик Hive преобразует запросы, представленные на языке HiveQL (вариант SQL) в задания MapReduce,
которые выполняются над таблицами, хранимыми в виде файлов HDFS

Слайд 106

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (18) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (12) Собственные компоненты HadoopDB (8) Планирование SQL (2)

Эти задания представляются в виде ориентированных ациклических графов (DAG) реляционных операций
фильтрации (ограничения),
выборки (проекции),
соединения,
агрегации,
каждая из которых выполняется в конвейере:
после обработки каждого очередного кортежа результат каждой операции направляется на вход следующей операции

Слайд 107

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (19) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (13) Собственные компоненты HadoopDB (9) Планирование SQL (3)

Операции соединения, как правило, выполняются в задаче Reduce MR-задания, соответствующего SQL-запросу
Это связано с тем, что каждая обрабатываемая таблица сохраняется в отдельном файле HDFS, и
невозможно предполагать совместного размещения соединяемых разделов таблиц в одном узле кластера
Для HadoopDB это не всегда так, поскольку соединяемые таблицы
могут разделяться по атрибуту соединения, и тогда операцию соединения можно вытолкнуть на уровень СУБД

Слайд 108

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (20) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (14) Собственные компоненты HadoopDB (10) Планирование SQL (4)

Пример
Пусть задан запрос: SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);
В Hive этот запрос обрабатывается следующим образом:
Производится синтаксический разбор запроса, и образуется его абстрактное синтаксическое дерево.
Далее работает семантический анализатор, который
выбирает из внутреннего каталога Hive MetaStore информацию о схеме таблицы sales, а также
инициализирует структуры данных, требуемые для сканирования этой таблицы и выборки нужных полей

Слайд 109

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (21) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (15) Собственные компоненты HadoopDB (11) Планирование SQL (5)

Затем генератор логических планов запросов производит план запроса – DAG реляционных операций
Вслед за этим оптимизатор перестраивает этот план запроса, проталкивая, например, операции фильтрации ближе к операциям сканирования таблиц
Основной функцией оптимизатора является разбиение плана на фазы Map и Reduce
В частности, перед операциями соединения и группировки добавляется операция переразделения данных (Reduce Sink)
Эти операции отделяют фазу Map от фазы Reduce
Оценочная (cost-based) оптимизация не используется, и поэтому получаемые планы не всегда эффективны

Слайд 110

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (22) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (16) Собственные компоненты HadoopDB (12) Планирование SQL (6)

Генератор физических планов выполнения запросов преобразует логический план в физический, допускающий выполнение в виде одного или нескольких MR-заданий
Первая (и каждая аналогичная) операция Reduce Sink помечает переход от фазы Map к фазе Reduce некоторого задания MapReduce, а остальные операции Reduce Sink помечают начало следующего задания MapReduce

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);

Слайд 111

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (23) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (17) Собственные компоненты HadoopDB (13) Планирование SQL (7)

Полученный DAG сериализуется в формате XML
Задания инициируются драйвером Hive, который
руководствуется планом в формате SQL и
создает все необходимые объекты, сканирующие данные в таблицах HDFS и покортежно обрабатывающие данные

Слайд 112

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (24) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (18) Собственные компоненты HadoopDB (14) Планирование SQL (8)

В планировщике SMS функциональность планировщика Hive расширяется следующим образом
Во-первых, до обработки каждого запроса модифицируется MetaStore, куда помещается информация о таблицах базы данных
Для этого используется каталог HadoopDB
Далее, после генерации физического плана запроса и до выполнения MR-заданий выполняются два прохода по физическому плану

Слайд 113

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (25) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (19) Собственные компоненты HadoopDB (15) Планирование SQL (9)

На первом проходе
устанавливается, какие столбцы таблиц действительно обрабатываются запросом,
и определяются ключи разделения, используемые в операциях Reduce Sink
На втором проходе DAG запроса обходится снизу-вверх от операций сканирования таблиц до формирования результата или первой операции Reduce Sink
Все операции этой части DAG преобразуются в один или несколько SQL-запросов, которые проталкиваются на уровень СУБД
Для повторного создания кода SQL используется специальный основанный на правилах генератор

Слайд 114

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (26) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (20) Собственные компоненты HadoopDB (16) Планирование SQL (10)

Такой план производится в том случае, если таблица sales является разделенной по YEAR(saleDate)
В этом случае вся логика выполнения запроса выталкивается в СУБД
Задача Map всего лишь записывает результаты запроса в файл HDFS

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);

Слайд 115

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (27) Общая

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
организация HadoopDВ (21) Собственные компоненты HadoopDB (17) Планирование SQL (11)

В противном случае генерируется такой план
При выполнении запроса по этому плану на уровне базы данных производится частичная агрегация данных,
а для окончательной агрегации требуется выполнение задачи Reduce, производящей слияние частичных результатов группировки, которые получены в каждом узле на фазе задачи Map

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);

Слайд 116

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (28) Характеристики

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
HadoopDВ (1)

Описан ряд экспериментов, показывающих, что гибридное использование технологий MapReduce и баз данных в реализации HadoopDB позволяет добиться от этой системы
производительности, соизмеримой с производительностью параллельных СУБД, и
устойчивости к отказам и падению производительности узлов, свойственной MapReduce
Кратко отметим основные результаты

Слайд 117

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (29) Характеристики

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
HadoopDВ (2) Производительность и масштабируемость (1)

В большинстве экспериментов
параллельные СУБД существенно превосходят HadoopDB по производительности,
а HadoopDB оказывается значительно (иногда на порядок) производительнее связки Hive и Hadoop MapReduce
В экспериментах использовались поколоночная параллельная СУБД Vertica и некоторая коммерческая параллельная СУБД-X с хранением таблиц по строкам
Наибольшую производительность, естественно, демонстрировала Vertica,
но в ряде случаев HadoopDB уступала ей значительно меньше, чем на десятичный порядок

Слайд 118

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (30) Характеристики

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
HadoopDВ (3) Производительность и масштабируемость (2)

Значительное отставание HadoopDB от параллельных СУБД объясняется тем, что в HadoopDB использовалась PostgreSQL, в которой отсутствует возможность хранения таблиц по столбцам
как уже отмечалось, в HadoopDB уже используется поколоночная СУБД
Кроме того, в экспериментах с HadoopDB не использовалось сжатие данных
Наконец, в HadoopDB возникали значительные накладные расходы на взаимодействие Hadoop MapReduce и PostgreSQL, которые потенциально можно снизить

Слайд 119

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (31) Характеристики

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
HadoopDВ (4) Производительность и масштабируемость (3)

Так что в целом производительность HadoopDB не должна критически отставать от производительности параллельных СУБД
Время загрузки данных в HadoopDB в десять раз больше соответствующего времени для Hadoop MapReduce
Однако это окупается десятикратным выигрышем в производительности при выполнении некоторых запросов

Слайд 120

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (32) Характеристики

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
HadoopDВ (5) Производительность и масштабируемость (4)

При возрастании числа узлов в кластере при одновременном увеличении объема данных HadoopDB (как и Hadoop) масштабируется почти линейно
Но в этом диапазоне не хуже масштабируется и Vertica
с СУБД-X дела обстоят несколько хуже,
а эксперименты на кластерах большего размера не производились
Так что объективных данных в этом отношении пока нет

Слайд 121

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (33) Характеристики

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
HadoopDВ (6) Устойчивость к отказам и неоднородности среды (1)

В экспериментах с отказоустойчивостью и падением производительности некоторого узла сравнивались HadoopDB, Hadoop MapReduce c Hive и Vertica
В первом случае работа одного из узлов кластера искусственным образом прекращалась после выполнения 50% обработки запроса
Во втором случае работа одного узла замедлялась за счет выполнения фонового задания с большим объемом ввода-вывода с тем же диском, на котором сохранялись файлы соответствующей системы

Слайд 122

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (34) Характеристики

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
HadoopDВ (7) Устойчивость к отказам и неоднородности среды (2)

При продолжении работы после отказа узла СУБД Vertica приходилось выполнять запрос заново с использованием реплик данных, и
время выполнения запроса возрастало почти вдвое
В HadoopDB и Hadoop MapReduce c Hive время выполнения увеличивалось примерно на 15-20% за счет того, что
задачи, выполнявшиеся на отказавшем узле, перераспределялись между оставшимися узлами
При этом относительная производительность HadoopDB оказывается несколько выше, чем у Hadoop MapReduce c Hive, поскольку
в первом случае обработка запроса проталкивалась на узлы, содержащие реплики баз данных,
а во втором приходилось копировать данные, не являющиеся локальными для обрабатывающего узла

Слайд 123

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (35) Характеристики

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
HadoopDВ (8) Устойчивость к отказам и неоднородности среды (3)

При замедлении работы одного из узлов производительность Vertica определялась скоростью этого узла,
и в экспериментах время выполнения запроса увеличивалось на 170%
При использовании HadoopDB и Hadoop MapReduce c Hive время выполнения запроса увеличивалось
всего на 30% за счет образования резервных избыточных задач в недозагруженных узлах

Слайд 124

23 апреля 2010 г.

Корпоративные базы данных 2010

Параллельная СУБД на основе MapReduce (36)

Проект

23 апреля 2010 г. Корпоративные базы данных 2010 Параллельная СУБД на основе
HadoopDB представляется очень интересным и перспективным
В отличие от других систем, HadoopDB – это проект с открытыми исходными текстами, так что потенциально участие в этой работе доступно для всех желающих
Помимо прочего, проект HadoopDB открывает путь к созданию высокопроизводительных, масштабируемых и отказоустойчивых параллельных СУБД на основе имеющихся программных средств с открытыми кодами

Слайд 125

23 апреля 2010 г.

Корпоративные базы данных 2010

ETL с использованием MapReduce (1)

Различных средств

23 апреля 2010 г. Корпоративные базы данных 2010 ETL с использованием MapReduce
ETL (Extract-Transform-Load) существует великое множество, и они применяются во многих компаниях, использующих хранилища данных
трудно даже пытаться как-то их классифицировать и/или сравнивать
Но, в любом случае, важность этих средств трудно переоценить, поскольку в хранилище данных по определению поступают данные из самых разнообразных источников:
транзакционных баз данных,
сообщений, участвующих в организации бизнес-процессов,
электронной почты,
журналов Web-серверов и т.д.
Все эти данные нужно очистить, привести к единому формату, согласовать и загрузить в хранилище данных для последующего анализа

Слайд 126

23 апреля 2010 г.

Корпоративные базы данных 2010

ETL с использованием MapReduce (2)

Можно согласиться,

23 апреля 2010 г. Корпоративные базы данных 2010 ETL с использованием MapReduce
что при использовании ортодоксального подхода к организации хранилищ данных подключение нового источника к хранилищу данных может занять недопустимо много времени во многом
из-за потребности в создании соответствующей процедуры ETL
Можно согласиться и с тем, что для аналитиков
гораздо важнее получить новые данные, чем быть вынужденными ждать неопределенное время их в согласованной форме
Но совершенно очевидно, что если данные в хранилище данных не очищать никогда, то
со временем в них не разберется никакой, даже самый передовой аналитик

Слайд 127

23 апреля 2010 г.

Корпоративные базы данных 2010

ETL с использованием MapReduce (3)

Итак, что

23 апреля 2010 г. Корпоративные базы данных 2010 ETL с использованием MapReduce
мы имеем
Число источников данных, пригодных для анализа в составе хранилища данных, все время растет
Их разнородность тоже все время возрастает
Все меньший процент составляют структурированные базы данных,
данные поступают из частично структурированных файлов и совсем неструктурированных текстовых документов
Для каждой разновидности источников данных нужна своя разновидность процедуры ETL, и
по причине роста объемов исходных данных для обеспечения умеренного времени их загрузки в хранилище данных эти процедуры должны выполняться в массивно-параллельной среде
И в этом может помочь технология MapReduce

Слайд 128

23 апреля 2010 г.

Корпоративные базы данных 2010

ETL с использованием MapReduce (4) MapReduce и

23 апреля 2010 г. Корпоративные базы данных 2010 ETL с использованием MapReduce
ETL (1)

Для канонического способа использования технологии MapReduce характерно применение следующих операций:
чтение журнальных данных из нескольких разных файлов-журналов;
разбор и очистка журнальных данных;
преобразования этих данных, в том числе их частичная агрегация;
принятие решения о схеме результирующих данных;
загрузка данных в хранилище данных или другую систему хранения

Слайд 129

23 апреля 2010 г.

Корпоративные базы данных 2010

ETL с использованием MapReduce (5) MapReduce и

23 апреля 2010 г. Корпоративные базы данных 2010 ETL с использованием MapReduce
ETL (2)

В точности такие же шаги выполняются в системах ETL при извлечении, преобразовании и загрузке данных
По сути дела, MapReduce производит из исходных "сырых" данных некоторую полезную информацию,
которую потребляет другая система хранения
В некотором смысле можно считать любую реализацию MapReduce
параллельной инфрастуктурой выполнения процедур ETL

Слайд 130

23 апреля 2010 г.

Корпоративные базы данных 2010

ETL с использованием MapReduce (6) MapReduce и

23 апреля 2010 г. Корпоративные базы данных 2010 ETL с использованием MapReduce
ETL (3)

Имелись попытки реализации процедур ETL внутри сервера баз данных средствами языка SQL
Разработчики параллельных СУБД с поддержкой MapReduce Greenplum Database и nCluster компании Aster Data тоже намекают, что их встроенный MapReduce можно использовать и для поддержки ETL
Но исторически системы ETL промышленного уровня существуют отдельно от СУБД
Обычно СУБД не пытаются выполнять ETL, а системы ETL не поддерживают функции СУБД

Слайд 131

23 апреля 2010 г.

Корпоративные базы данных 2010

ETL с использованием MapReduce (7) Hadoop и

23 апреля 2010 г. Корпоративные базы данных 2010 ETL с использованием MapReduce
Vertica (1)

Если иметь в виду поддержку именно ETL, то наиболее грамотное
и самое простое
решение по интеграции технологий MapReduce и параллельных баз данных применяется в Vertica

Слайд 132

23 апреля 2010 г.

Корпоративные базы данных 2010

ETL с использованием MapReduce (8) Hadoop и

23 апреля 2010 г. Корпоративные базы данных 2010 ETL с использованием MapReduce
Vertica (2)

В Vertica реализован свой вариант интерфейса DBInputFormat компании Cloudera для Hadoop MapReduce, позволяющий разработчикам MapReduce
выбирать данные из баз данных Vertica и
направлять результирующие данные в эти базы данных
При этом подходе технологии MapReduce и параллельных баз данных тесно не интегрируются, но каждая из них может использовать возможности другой технологии

Слайд 133

23 апреля 2010 г.

Корпоративные базы данных 2010

ETL с использованием MapReduce (9)

Скорее всего,

23 апреля 2010 г. Корпоративные базы данных 2010 ETL с использованием MapReduce
мы еще многое услышим о системах ETL, основанных на использовании технологии MapReduce, и, скорее всего,
предводителем этого направления будет Vertica

Слайд 134

23 апреля 2010 г.

Корпоративные базы данных 2010

Заключение (1)

Еще пару лет назад было

23 апреля 2010 г. Корпоративные базы данных 2010 Заключение (1) Еще пару
непонятно, каким образом можно с пользой применять возникающие "облачные" среды для высокоуровневого управления данными
Многие люди считали, что в "облаках" системы управления базами данных будут просто вытеснены технологией MapReduce
Это вызывало естественное недовольство сообщества баз данных, авторитетные представители которого старались доказать, что пытаться заменить СУБД какой-либо реализацией MapReduce
если не безнравственно,
то, по крайней мере, неэффективно

Слайд 135

23 апреля 2010 г.

Корпоративные базы данных 2010

Заключение (2)

Однако вскоре стало понятно, что

23 апреля 2010 г. Корпоративные базы данных 2010 Заключение (2) Однако вскоре
технология MapReduce может быть полезна для самих параллельных СУБД
Во многом становлению и реализации этой идеи способствовали компании-стартапы, выводящие на рынок новые аналитические массивно-параллельные СУБД и добивающиеся конкурентных преимуществ
Свою лепту вносили и продолжают вносить и университетские исследовательские коллективы, находящиеся в тесном сотрудничестве с этими начинающими компаниями

Слайд 136

23 апреля 2010 г.

Корпоративные базы данных 2010

Заключение (3)

На сегодняшний день уже понятно,

23 апреля 2010 г. Корпоративные базы данных 2010 Заключение (3) На сегодняшний
что технология MapReduce может
эффективно применяться внутри параллельной аналитической СУБД,
служить инфраструктурой отказоустойчивой параллельной СУБД,
а также сохранять свою автономность в симбиотическом союзе с параллельной СУБД
Все это не только мешает развитию технологии параллельных СУБД, а наоборот, способствует ее совершенствованию и распространению

Слайд 137

23 апреля 2010 г.

Корпоративные базы данных 2010

Заключение (4)

Интересные работы ведутся и в

23 апреля 2010 г. Корпоративные базы данных 2010 Заключение (4) Интересные работы
направлении использования "облачных" сред для создания нового поколения транзакционных средств управления данными
Но это уже совсем другая история

Слайд 138

23 апреля 2010 г.

Корпоративные базы данных 2010

Заключение (5)

Полный текст:
Сергей Кузнецов. MapReduce: внутри,

23 апреля 2010 г. Корпоративные базы данных 2010 Заключение (5) Полный текст:
снаружи или сбоку от параллельных СУБД?
http://citforum.ru/database/articles/dw_appliance_and_mr/
Имя файла: MapReduce.pptx
Количество просмотров: 294
Количество скачиваний: 2