Содержание
- 2. Теория принятия решений ПетрГУ, А.П.Мощевикин, 2004 г. ПР в условиях риска Промежуточный случай между полной определенностью
- 3. Теория принятия решений ПетрГУ, А.П.Мощевикин, 2004 г. Учет неопределенных факторов, заданных законом распределения а) Замена случайных
- 4. Теория принятия решений ПетрГУ, А.П.Мощевикин, 2004 г. ПР в условиях риска Пример КОЗ Пусть мастерская имеет
- 5. Теория принятия решений ПетрГУ, А.П.Мощевикин, 2004 г. ПР в условиях риска Критерий "ожидаемого значения – дисперсия"
- 6. Теория принятия решений ПетрГУ, А.П.Мощевикин, 2004 г. ПР в условиях риска Критерий предельного уровня Этот критерий
- 7. Теория принятия решений ПетрГУ, А.П.Мощевикин, 2004 г. Стохастическое программир-е Постановка задачи стохастического программирования Случайные факторы: спрос,
- 8. Теория принятия решений ПетрГУ, А.П.Мощевикин, 2004 г. Стохастическое программир-е Постановка задачи стохастического программирования б) Случайны коэффициенты
- 9. Теория принятия решений ПетрГУ, А.П.Мощевикин, 2004 г. Стохастическое программир-е Представленные выше задачи, как в М-постановке, так
- 11. Скачать презентацию
Слайд 2Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
ПР в условиях риска
Промежуточный случай между полной
Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
ПР в условиях риска
Промежуточный случай между полной
Критерий ожидаемого значения;
Критерий "ожидаемого значения - дисперсия";
Критерий предельного уровня;
Критерий наиболее вероятного исхода.
Критерий ожидаемого значения
Есть исходные данные о вероятности полученного результата при различных решениях, т.е. КОЗ – выборочные средние значения случайной величины. Естественно, что достоверность получаемого решения при этом будет зависеть от объема выборки. Так, если обозначить
КОЗ - Е(x1,x2,...,xn), где x1, x2,..., xn - принимаемые решения при их количестве, равном n, то
E(xi) => M(xi), где
M(xi) - математическое ожидание критерия.
Таким образом, КОЗ может применяться, когда однотипные решения в сходных ситуациях приходится принимать большое число раз.
Слайд 3Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
Учет неопределенных факторов, заданных законом распределения
а) Замена
Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
Учет неопределенных факторов, заданных законом распределения
а) Замена
б) Определение целевой функции для дискретных и непрерывных величин Р-подстановка
P(Ui) - ряд распределений случайной величины Ui;
f(U) - плотность распределения случайной величины U.
При описании дискретных случайных величин наиболее часто используют распределения Пуассона, биноминальное. Для непрерывных величин основными распределениями являются нормальное, равномерное и экспоненциальное.
Стохастическое программир-е
Слайд 4Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
ПР в условиях риска
Пример КОЗ
Пусть мастерская имеет
Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
ПР в условиях риска
Пример КОЗ
Пусть мастерская имеет
КОЗ для данного случая запишется так:
где E[C(T)] - КОЗ затрат на ремонт станков за один интервал времени; C1 - затраты на ремонт одного станка при внезапном отказе; E(nt) - математическое ожидание вышедших из строя станков в момент t; C2 - затраты на профилактический (плановый) ремонт одного станка.
Допустим, что nt имеет биноминальное распределение, тогда E(nt) = n*pt и
Необходимые условия оптимального значения T* имеют вид:
E[C(T*-1)]≥E[C(T*)] и E[C(T*+1)]≥E[C(T*)].
Слайд 5Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
ПР в условиях риска
Критерий "ожидаемого значения –
Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
ПР в условиях риска
Критерий "ожидаемого значения –
Как указывалось выше, КОЗ имеет область применения, ограниченную значительным числом однотипных решений, принимаемых в аналогичных ситуациях. Этот недостаток можно устранить, если применять комбинацию КОЗ и выборочной дисперсии σ2. Возможным критерием при этом является минимум выражения
E(Z,σ) = E(Z) ± k*U(z) ? min,
где E(Z,σ) - критерий "ожидаемого значения - дисперсия"; k - постоянный коэффициент; U(Z) = mZ/S - выборочный коэффициент вариации; mZ - оценка математического ожидания; S - оценка среднего квадратического ожидания.
Знак "минус" ставится в случае оценки прибыли, знак "плюс" - в случае затрат.
Из зависимости видно, что в данном случае точность предсказания результата повышается за счет учета возможного разброса значений E(Z), то есть введения своеобразной "страховки". При этом степень учета этой страховки регулируется коэффициентом k, который как бы управляет степенью учета возможных отклонений. Так, например, если для ЛПР имеет большое значение ожидаемые потери прибыли, то k>>1 и при этом существенно увеличивается роль отклонений от ожидаемого значения прибыли E(Z) за счет дисперсии.
Слайд 6Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
ПР в условиях риска
Критерий предельного уровня
Этот критерий
Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
ПР в условиях риска
Критерий предельного уровня
Этот критерий
Несмотря на отсутствие формализации критерием предельного уровня пользуются довольно часто, задаваясь их значениями на основании экспертных или опытных данных.
Критерий наиболее вероятного исхода
Этот критерий предполагает замену случайной ситуации детерминированной путем замены случайной величины прибыли (или затрат) единственным значением, имеющим наибольшую вероятность реализации. Использование данного критерия, также как и в предыдущем случае в значительной степени опирается на опыт и интуицию.
Обстоятельства, затрудняющие применение этого критерия:
критерий нельзя использовать, если наибольшая вероятность события недопустимо мала;
применение критерия невозможно, если несколько значений вероятностей возможного исхода равны между собой.
Слайд 7Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
Стохастическое программир-е
Постановка задачи стохастического программирования
Случайные факторы: спрос,
Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
Стохастическое программир-е
Постановка задачи стохастического программирования
Случайные факторы: спрос,
Задачи стохастического программирования часто решают тогда, когда элементы задачи (А – матрица, b – столбец вектора ресурсов, c – вектор оценок) – случайны.
Для одноэтапной задачи (нет итераций) она может быть сформулирована в M и P постановках по отношению к записи целевой функции и ограничений.
а) Случайны элементы вектора с (целевая функция).
М-постановка
От мат. ожидания по W приходим к мат. ожиданию по cj.
P-постановка (максимизация)
P-постановка (минимизация)
Wmin - предварительно заданное допустимое наихудшее (минимальное) значение целевой функции, Wmax – наихудшее (максимальное). Суть P-постановки заключается в том, что необходимо найти такие значения xj, при которых максимизируется вероятность того, что целевая функция будет не хуже предельно допустимого значения.
Слайд 8Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
Стохастическое программир-е
Постановка задачи стохастического программирования
б) Случайны коэффициенты
Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
Стохастическое программир-е
Постановка задачи стохастического программирования
б) Случайны коэффициенты
Ограничения
М-постановка (статистические ограничения)
P-постановка (вероятностные ограничения)
Вероятность выполнения каждого заданного ограничения должна превышать заранее назначенное число αi.
Слайд 9Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
Стохастическое программир-е
Представленные выше задачи, как в М-постановке,
Теория принятия решений
ПетрГУ, А.П.Мощевикин, 2004 г.
Стохастическое программир-е
Представленные выше задачи, как в М-постановке,
Пусть aij, bi, ci – распределены по нормальному закону, тогда...
Целевая функция (максимизация)
σj – среднеквадратичное отклонение
случайной величины cj.
Целевая функция (минимизация)
Вероятностные ограничения
σj2, θj2 – дисперсии случайных величин aij, bi,
tαi – значение центрированной нормированной случайной величины в нормальном законе распределения, соответствующей заданному уровню вероятности соблюдения ограничения αi.