Решение уравнений, содержащих знак абсолютной величины

Содержание

Слайд 2

Гипотеза исследования

Если мы будем знать способы решения уравнений, содержащих знак абсолютной величины,

Гипотеза исследования Если мы будем знать способы решения уравнений, содержащих знак абсолютной
будем уметь их классифицировать на группы, то это позволит нам без особых усилий решать уравнения такого типа.

Слайд 3

Цель исследования: изучить различные способы решения уравнений, содержащих знак абсолютной величины.
Задачи

Цель исследования: изучить различные способы решения уравнений, содержащих знак абсолютной величины. Задачи
исследования:
 Познакомиться с понятием модуля, его свойствами, графиком;
Рассмотреть различные способы решения уравнений, содержащих модуль;
Составить памятку-практикум для обучающихся 8-9 классов.

Слайд 4


Уравнения, содержащие знак абсолютной величины в курсе математики 5-8 классов.

Различные способы

Уравнения, содержащие знак абсолютной величины в курсе математики 5-8 классов. Различные способы
решения уравнений, содержащих знак модуля.

Объект исследования:

Предмет исследования:

Слайд 5

Методы исследования

1) теоретические: изучение и анализ научно-теоретической литературы по теме работы;
2) эмпирические:

Методы исследования 1) теоретические: изучение и анализ научно-теоретической литературы по теме работы;
провести анализ различных способов решения уравнений, содержащих знак модуля.

Слайд 6

История возникновения модуля

Слово «модуль» произошло от латинского слова «modulus», что в переводе

История возникновения модуля Слово «модуль» произошло от латинского слова «modulus», что в
означает «мера». Считают, что термин предложил использовать английский математик Котс, ученик Ньютона. Общепринятое обозначение абсолютной величины (модуля) введено в 1841 году Вейерштрассом.

Слайд 7

Определение модуля

Абсолютной величиной (модулем) действительного числа a называется само число a, если

Определение модуля Абсолютной величиной (модулем) действительного числа a называется само число a,
a - неотрицательное число, и число противоположное a, если a - отрицательное число.

Слайд 8

Основные свойства модуля:

1)

3)

4)

2)

5)

6)

Основные свойства модуля: 1) 3) 4) 2) 5) 6)

Слайд 9

Пример: решить уравнение

нули подмодульных выражений – это числа - 4 и

Пример: решить уравнение нули подмодульных выражений – это числа - 4 и 3. 2) МЕТОД ИНТЕРВАЛОВ
3.
2)

МЕТОД ИНТЕРВАЛОВ

Слайд 10

а) Если x < - 4 , то данное уравнение примет вид:

а) Если x - (x + 4) – (x – 3) =
- (x + 4) – (x – 3) = 7,
- x – 4 – x + 3 =7,
- 2 x = 8,
x = - 4,
- 4 не удовлетворяет условию x < - 4, значит при
x < - 4 данное уравнение не имеет корней.

МЕТОД ИНТЕРВАЛОВ

Слайд 11

б) Если – 4 ≤ x ≤ 3, то данное уравнение примет

б) Если – 4 ≤ x ≤ 3, то данное уравнение примет
вид:
( x + 4) – (x – 3) = 7,
x + 4 – x + 3 = 7,
7 = 7,
верно для любого значения х из взятого промежутка. Значит данное уравнение верно для всех х, удовлетворяющих условию – 4 ≤ x ≤ 3.

МЕТОД ИНТЕРВАЛОВ

Слайд 12

в) Если х > 3, то данное уравнение примет вид:
(х +

в) Если х > 3, то данное уравнение примет вид: (х +
4) + (х – 3) = 7,
2 х + 1 = 7,
2 х = 6,
х = 3,
3 не удовлетворяет условию х > 3, значит, при
x > 3 данное уравнение не имеет корней.
Ответ. - 4 ≤ х ≤ 3.

МЕТОД ИНТЕРВАЛОВ

Слайд 13

Графический способ
1) «делим» уравнение на две части,
2) вводим две функции,
3)

Графический способ 1) «делим» уравнение на две части, 2) вводим две функции,
строим их графики,
4) находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

Слайд 14

Решить уравнение

Решение: Решим уравнение графически, представив его в виде

Строим два графика

Решить уравнение Решение: Решим уравнение графически, представив его в виде Строим два

и

Графики функций пересекаются в точке x=2.

Ответ. 2.

Графический способ

Слайд 15

Практическая часть исследования

памятка-практикум для обучающихся 8-9 классов;
тесты;
упражнения и задания различной трудности;
ответы ко

Практическая часть исследования памятка-практикум для обучающихся 8-9 классов; тесты; упражнения и задания
всем типам заданий.

Слайд 16

Заключение

познакомились с понятием модуля, его свойствами, геометрической интерпретацией;
обобщили понятие абсолютной величины;

Заключение познакомились с понятием модуля, его свойствами, геометрической интерпретацией; обобщили понятие абсолютной

рассмотрели свойства модуля;
по результатам исследования составлен методический материал;
гипотеза исследования была подтверждена;
Имя файла: Решение-уравнений,-содержащих-знак-абсолютной-величины.pptx
Количество просмотров: 234
Количество скачиваний: 1