гипотенузой с.
Доказательство:
Достроим этот треугольник до квадрата со стороной a+b .
У этого квадрата сторона а+b , а его площадь равна S кв = (a+b)2
С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников и четырёхугольника со стороной с, который является квадратом, т.к.<1=<3=<5=<7 и <2=<4=<6=<8 => <1+<8 = <2+<5 = <3+<6 = <4+<7 =900.
Найдём площадь квадрата: S кв =4Sтр + с2 =4·1/2 ab + c2 = =2ab + c2. Тогда (a+b)2 = 2ab+c2,
a2 + 2ab + b2 = 2ab +c2 , a2 + b2 = c2.
1 8
7
6
4 5