Слайд 5Пусть di,j обозначает длину кратчайшего пути из вершины i в вершину j. Тогда
через D обозначается матркца n×n, в которой элементом (i, j) является di,j. Элементы в матрице называются расстоянимми вершина — вершина. Напомним, что для вычисления элементов матрицы 1 может быть использован любой из двух рассмотренных ранее алгоритмов: алгоритм Флойда или алгоритм Данцига. Пусть через d(f -(r,s ), j) обозначена длина кратчайшего пути от f-точки на дуге (r,s) до вершины j. Эта величина называется расстоянием точка — вершина. Если дуга (r,s) неориентированная, т. е. допустим ее обход в обоих направлениях, то в качестве d(f -(r,s ), j) должно быть выбрано паименьшее из следующих двух расстояний:
(а) расстояние от точки до вершины r плюс расстояние от вершины f до вершины j,
(б) расстояние от f-точки до вершины s плюс расстояние от вершины s до вершины j.
Таким образом,
d(f—(r,s ),j)=min{f×аr,s+dr,j), (1—f)×аr,s+ds,j}. (1a)
Если дуга (r,s) ориентированная, т. е. ее обход допустим только из r в s, то первый член в (1а) может быть исключен и
d(f—(r,s ),j) =(1—f)×аr,s+ds,j . (1б)