Содержание
- 2. ЦЕЛЬ РАБОТЫ В работе рассматривается процесс прогрева и распространения тепла между составными частями конструкции, обладающими различными
- 3. ВВЕДЕНИЕ При рассмотрении многих явлений в природе и технике важную роль играет теплопроводность. Так, например, при
- 4. Физическая постановка задачи В работе рассматривается процесс прогрева и распространения тепла между составными частями конструкции, обладающими
- 5. Математическая постановка задачи
- 6. Математическая постановка задачи
- 7. Дискретизация
- 8. Построение конечно-разностного аналога Полученную систему линейных алгебраических уравнений (3.2) будем решать методом прогонки.
- 9. Порядок аппроксимации неявной схемы коэффициент температуропроводности.
- 10. Устойчивость
- 11. Сеточная сходимость Для исследования на сеточную сходимость решения, полученного путем применения неявной разностной схемы, проведем ряд
- 12. Визуализация полученных результатов Численная реализации рассматриваемого в работе способа решения задачи выполнена на языке программирования Pascal
- 13. Визуализация полученных результатов Рисунок 6 – Распределение температуры по толщине конструкции спустя 600 секунд от начала
- 14. Визуализация полученных результатов Рисунок 7 – Распределение температуры по толщине конструкции спустя 1200 секунд от начала
- 16. Из иллюстраций видно, что тепловая энергия от нагреваемой поверхности достаточно быстро распространяется по толщине пластины. Время
- 17. Верификация результатов расчета с ANSYS Fluent В работе проведено математическое моделирование протекающего физического процесса в пакете
- 18. Физическая постановка задачи Рассматривается процесс прогрева и распространения тепла между составными частями 4-х слойной конструкции, включающей
- 19. Визуализация полученных результатов Рисунок 12 - Визуализация распределения температуры в 4-х слойной пластине с изолирующей вставкой
- 20. Рисунок 12.1 - Визуализация распределение температуры в 4-х слойной пластине с изолирующей вставкой из каменной ваты
- 21. Верификация результатов расчета с ANSYS Fluent Рисунок 13 - Распределение Т по толщине пластины (при y=0.025
- 22. Рисунок 13.1 - Распределение Т по толщине пластины (при y=0.025 м) с изолирующей вставкой (каменная вата)
- 23. Рисунок 13.2 – Сравнение значений температур в пластинах без изолятора и с изолятором (пеноплекс/каменная вата) за
- 24. Рисунок 14 - Распределение температуры по толщине конструкции без изолятора спустя 600 секунд от начала процесса
- 25. ЗАКЛЮЧЕНИЕ Из результатов моделирования следует, что четырехслойная конструкция, содержащая изолятор из пеноплекса или каменной ваты прогревается
- 26. СПИСОК ЛИТЕРАТУРЫ Сиковский Д.Ф. Методы вычислительной теплофизики / Д.Ф. Сиковский. – Изд-во Новосиб. гос. ун-та, 2013.
- 28. Скачать презентацию

























О, сколько нам открытий чудных…
Солнечная энергетика
Чи довго пратимете
Презентация на тему Движение под действием нескольких сил
Измерение работы и мощности тока в электрической лампе. Лабораторная работа № 7
Цепные передачи
Напряженность электрического поля. Принцип суперпозиции электрических полей
Давление твердых тел. 7 класс
Электрический ток в различных средах
Внутренняя энергия
Презентация на тему Спектр электромагнитных волн
Атмосферное давление и жизнь на Земле
Изучение движение тела по окружности
Зависимость давления твердых тел от силы давления и от площади поверхности, на которую действует сила давления
Дорожное движение
Окружающие нас тела называются физическими телами. Строение вещества. Молекула
Скрытный Эсминец
6
Мирный атом
Лампочка. История изобретения
Теоретические основы механики грунтов. Глава 1
Полупроводниковые материалы. Свойства полупроводниковых материалов. Лекция 1
Эластичность
Презентация на тему Импульс. Закон сохранения импульса
Презентация на тему Архимедова сила
Интерференция волн
Энергия. Потенциальная и кинетическая энергия
Механические передачи