Уравнение адиабатического процесса для идеального газа

Содержание

Слайд 2

2.5. Уравнение адиабатического процесса для идеального газа.

 

2.5. Уравнение адиабатического процесса для идеального газа.

Слайд 3

Вывод уравнения адиабаты.

 

Вывод уравнения адиабаты.

Слайд 4

Приведение подобных слагаемых.

 

Приведение подобных слагаемых.

Слайд 5

Диф. уравнение адиабаты.

 

Диф. уравнение адиабаты.

Слайд 6

Интегрирование уравнения.

 

Интегрирование уравнения.

Слайд 7

Уравнение адиабаты.

 

Уравнение адиабаты.

Слайд 8

Другие формулы адиабаты.

 

Другие формулы адиабаты.

Слайд 9

Расчёт работы в адиабатическом процессе.

 

Расчёт работы в адиабатическом процессе.

Слайд 10

2.6. Второе начало термодинамики.

На основе первого начала термодинамики можно решить много термодинамических

2.6. Второе начало термодинамики. На основе первого начала термодинамики можно решить много
задач. Однако, не все явления термодинамики описываются этим законом. Этот закон не устанавливает направленность процессов.
Progr D: Progr E: Progr F: Progr G: Progr H:
Progr D: Progr E: Progr F: Progr G: Progr H:

Слайд 11

Необратимость потоков тепла.

Как мы видели выше, тепловые процессы сами по себе протекают

Необратимость потоков тепла. Как мы видели выше, тепловые процессы сами по себе
всегда в направлении, когда тепло перетекает от более горячего тела к более холодному. В этом и состоит одна из формулировок второго начала термодинамики. Иначе говоря, не возможны процессы, при которых тепло самопроизвольно перетекало бы от холодного тела к горячему.

Слайд 12

Замечание.

В этой формулировке существенным является уточнение «самопроизвольно». Перекачка тепла от холодного тела

Замечание. В этой формулировке существенным является уточнение «самопроизвольно». Перекачка тепла от холодного
к горячему возможна (это подтверждает работа холодильников), но для этого необходимо затратить дополнительную энергию, т.е. произвести работу над системой.

Слайд 13

Приведённая теплота.

 

Приведённая теплота.

Слайд 14

Равновесные и неравновесные процессы.

Определение. Процессы, протекающие при конечных разностях термодинамических параметров, называются

Равновесные и неравновесные процессы. Определение. Процессы, протекающие при конечных разностях термодинамических параметров,
неравновесными.
Это название обусловлено тем, в течение этих процессов система не успевает прийти к равновесию.
Определение. Процессы, протекающие при бесконечно малых разностях термодинамических параметров, называются равновесными.

Слайд 15

Характеристика равновесных процессов.

Они характерны тем, что каждое промежуточное состояние системы в этих

Характеристика равновесных процессов. Они характерны тем, что каждое промежуточное состояние системы в
процессах можно считать равновесным. Такие процессы, очевидно должны быть достаточно медленными, чтобы успевали пройти тепловые процессы выравнивания термодинамических параметров.

Слайд 16

Понятие энтропии.

 

Понятие энтропии.

Слайд 17

Перетекание энтропии.

 

Перетекание энтропии.

Слайд 18

Энтропия при равновесных процессах.

 

Энтропия при равновесных процессах.

Слайд 19

Передача тепла при конечной разности температур.

 

Передача тепла при конечной разности температур.

Слайд 20

Второе начало термодинамики.

 

Второе начало термодинамики.

Слайд 21

Вторая формулировка второго начала.

Существует ряд других формулировок второго начала.
Невозможно создать машину, единственным

Вторая формулировка второго начала. Существует ряд других формулировок второго начала. Невозможно создать
результатом действия которой было бы отнятие теплоты от некоторого тела и полностью превращение её в работу.
В этом случае коэффициент полезного действия был бы равен 100 %.

Слайд 22

Третья формулировка второго начала.

Отсюда вытекает ещё одна формулировка.
Не возможен вечный двигатель второго

Третья формулировка второго начала. Отсюда вытекает ещё одна формулировка. Не возможен вечный
рода, т.е. двигатель, кпд которого равен единице.
Можно показать, что все формулировки второго начала термодинамики эквивалентны.

Слайд 23

2.7. Круговые процессы. Цикл Карно.

Определение. Процессы, при которых термодинамические параметры в начале

2.7. Круговые процессы. Цикл Карно. Определение. Процессы, при которых термодинамические параметры в
и конце процесса совпадают, называются круговыми процессами или термодинамическими циклами.
Одним из самых важных в термодинамике циклов является цикл Карно. Он состоит из двух адиабат и двух изотерм.

Слайд 24

Цикл Карно.

 

Цикл Карно.

Слайд 25

Рисунок цикла Карно.

Рисунок цикла Карно.

Слайд 26

Количество теплоты на первой изотерме цикла.

 

Количество теплоты на первой изотерме цикла.

Слайд 27

Теплота на втором изотермическом участке цикла.

 

Теплота на втором изотермическом участке цикла.

Слайд 28

КПД цикла Карно.

 

КПД цикла Карно.

Слайд 29

Соотношения для объёмов.

 

Соотношения для объёмов.

Слайд 30

Преобразование формулы.

 

Преобразование формулы.

Слайд 31

Необратимый цикл Карно.

 

Необратимый цикл Карно.

Слайд 32

2.8. Функции состояния.

 

2.8. Функции состояния.

Слайд 33

Функции состояния.

Определение. Параметры термодинамической системы, изменение которых за полный цикл равно нулю,

Функции состояния. Определение. Параметры термодинамической системы, изменение которых за полный цикл равно
называются функциями состояния системы.
С математической точки зрения это означает, что их элементарное изменение представляет собой полный дифференциал.
Согласно определению и последнему равенству энтропия есть функция состояния системы.

Слайд 34

Первое начало с использованием энтропии.

 

Первое начало с использованием энтропии.

Слайд 35

Дифференциал энтропии.

 

Дифференциал энтропии.

Слайд 36

Приведём подобные.

 

Приведём подобные.

Слайд 37

Связь энтропии с давлением и теплоёмкостью.

 

Связь энтропии с давлением и теплоёмкостью.

Слайд 38

Соотношения между термодинамическими параметрами.

Таким образом, только из того факта, что некоторая величина

Соотношения между термодинамическими параметрами. Таким образом, только из того факта, что некоторая
есть функция состояния, можно находить соотношения между термодинамическими параметрами.
Имя файла: Уравнение-адиабатического-процесса-для-идеального-газа.pptx
Количество просмотров: 37
Количество скачиваний: 0