Явления переноса в газах

Содержание

Слайд 2

Столкновения молекул

В газовой среде могут иметь место неоднородности концентрации компонентов газовой смеси,

Столкновения молекул В газовой среде могут иметь место неоднородности концентрации компонентов газовой
скорости перемещения макроскопических масс вещества, температуры.
Равновесие в газе устанавливается в результате столкновений между молекулами.
Для этого достаточно, чтобы каждая молекула испытала одно-два столкновения.

Слайд 3

Столкновения молекул

Для упрощения расчета предположим, что движется только одна молекула с постоянной

Столкновения молекул Для упрощения расчета предположим, что движется только одна молекула с
скоростью v, а все остальные молекулы неподвижны.
Будем называть движущуюся молекулу молекулой А. Вообразим, что с молекулой А жестко связана концентрическая с ней твердая сфера S вдвое большего диаметра.
Назовем эту сферу сферой ограждения молекулы А. В момент столкновения расстояние между центрами сталкивающихся молекул равно диаметру молекулы d.

Слайд 4

Столкновения молекул

Между двумя последовательными столкновениями молекулы А ее сфера ограждения описывает цилиндр,

Столкновения молекул Между двумя последовательными столкновениями молекулы А ее сфера ограждения описывает
длина которого и есть свободный пробег молекулы А. Из таких цилиндров складывается поверхность, описываемая с течением времени сферой ограждения
Если центр другой молекулы лежит внутри или на боковой поверхности этого цилиндра, то она столкнется с молекулой А. В противном случае столкновения не произойдет.

Слайд 5

Столкновения молекул

Пусть V – объем ломаного цилиндра, описываемого сферой S в единицу

Столкновения молекул Пусть V – объем ломаного цилиндра, описываемого сферой S в
времени. Среднее число z столкновений движущейся молекулы с остальными молекулами в единицу времени равно среднему числу последних в объеме V,
z = Vn,
где n – число молекул в единице объема.

Слайд 6

Столкновения молекул

 

Столкновения молекул

Слайд 7

Длина свободного пробега

 

Длина свободного пробега

Слайд 8

Длина свободного пробега

 

Длина свободного пробега

Слайд 9

Длина свободного пробега

 

Длина свободного пробега

Слайд 10

Средняя относительная скорость

 

Средняя относительная скорость

Слайд 11

Длина свободного пробега

 

Длина свободного пробега

Слайд 12

Длина свободного пробега

Длина свободного пробега не зависит от температуры.
Физический смысл этого

Длина свободного пробега Длина свободного пробега не зависит от температуры. Физический смысл
явления можно понять, если вспомнить, что с повышением температуры увеличивается средняя скорость молекул.
Они при этом быстрее двигаются, но и чаще сталкиваются, в итоге ничего не выигрывая в свободном пробеге.

Слайд 13

Длина свободного пробега

 

Длина свободного пробега

Слайд 14

Рассеяние молекулярного пучка в газе

Допустим, что в газе распространяется параллельный пучок молекул.

Рассеяние молекулярного пучка в газе Допустим, что в газе распространяется параллельный пучок

Пусть Jo — интенсивность пучка, когда он пересекает плоскость АВ, перпендикулярную к нему.
Найдем интенсивность J того же пучка на расстоянии х от плоскости АВ.

Слайд 15

Рассеяние молекулярного пучка в газе

Возьмем бесконечно тонкий слой газа с толщиной dx

Рассеяние молекулярного пучка в газе Возьмем бесконечно тонкий слой газа с толщиной
и площадью поперечного сечения S = 1.
Число молекул газа в нем равно nSdx = ndx.
Среднее число частиц, выбывающих из пучка из-за столкновений с одной молекулой газа, равно Jσ,
из-за столкновений с ndx молекулами
dN = Jσndx = (J/λ)dx. На такую величину уменьшится интенсивность пучка после прохождения слоя dx 

Слайд 16

Рассеяние молекулярного пучка в газе

 

Рассеяние молекулярного пучка в газе

Слайд 17

Рассеяние молекулярного пучка в газе

 

Рассеяние молекулярного пучка в газе

Слайд 18

Рассеяние молекулярного пучка в газе

 

Рассеяние молекулярного пучка в газе

Слайд 19

Принцип локального равновесия

Принцип (или гипотезы) локального равновесия, который состоит в следующем. Как

Принцип локального равновесия Принцип (или гипотезы) локального равновесия, который состоит в следующем.
уже говорилось, в результате столкновений молекул друг с другом устанавливается равновесное распределение их по скоростям поступательного движения. Причем достаточно, чтобы каждая из молекул испытала одно-два соударения. В принципе локального равновесия предполагается, что все молекулы, попавшие в объем, размеры которого порядка <λ>, испытают в нем соударения и что в этом малом объеме устанавливается локальное равновесие с некоторой температурой, плотностью и т. д. В другом подобном объеме также устанавливается равновесное состояние, но по другим по величине параметрами. Таким образом, каждой точке пространства можно приписать свои локальные параметры.

Слайд 20

Диффузия

Допустим, что закрытая горизонтальная труба разделена на две части перегородкой. По одну

Диффузия Допустим, что закрытая горизонтальная труба разделена на две части перегородкой. По
сторону перегородки находится какой-то газ 1, а по другую – газ 2.
Пусть давления и температуры обоих газов одинаковы. Если удалить перегородку, то газы начнут перемешиваться. Причиной этого является хаотическое тепловое движение молекул. Спустя некоторое время концентрации компонентов смеси станут одинаковыми по обе стороны перегородки.
Такое проникновение молекул одного газа в среду молекул другого газа называется взаимной, или концентрационной диффузией газов.
Если газы по обе стороны перегородки тождественны, то диффузия также будет происходить. В этом случае она называется самодиффузией.

Слайд 21

Диффузия

Рассмотрим случай, когда в газе есть примесь другого газа. Общее давление везде

Диффузия Рассмотрим случай, когда в газе есть примесь другого газа. Общее давление
одинаково, а концентрация примеси n(х) меняется вдоль оси х .
Выделим перпендикулярную этой оси единичную площадку. Потоки молекул в единицу времени с одной и другой стороны пропорциональны концентрациям в элементах объема, находящихся на расстояниях, отстоящих примерно на величину свободного пробега слева и справа от площадки.
Будем приближенно считать, что по направлению к площадке двигаются 1/6 часть молекул с одинаковой скоростью равной средней скорости молекул примеси.

Слайд 22

Диффузия

 

Диффузия

Слайд 23

Диффузия

 

Диффузия

Слайд 24

Связь между коэффициентами подвижности и диффузии

 

Связь между коэффициентами подвижности и диффузии

Слайд 25

Связь между коэффициентами подвижности и диффузии

 

Связь между коэффициентами подвижности и диффузии

Слайд 26

Связь между коэффициентами подвижности и диффузии

 

Связь между коэффициентами подвижности и диффузии

Слайд 27

Связь между коэффициентами подвижности и диффузии

 

Связь между коэффициентами подвижности и диффузии

Слайд 28

Теплопроводность

 

Теплопроводность

Слайд 29

Теплопроводность

 

Теплопроводность

Слайд 30

Теплопроводность

 

Теплопроводность

Слайд 31

Теплопроводность

 

Теплопроводность

Слайд 32

Теплопроводность

Поток тепла пропорционален градиенту температуры и направлен против него.
Этот факт

Теплопроводность Поток тепла пропорционален градиенту температуры и направлен против него. Этот факт
был установлен экспериментально и назван законом Фурье.

Слайд 33

Вязкость газа

Между двумя параллельными пластинками АВ и СD) находится воздух или другой

Вязкость газа Между двумя параллельными пластинками АВ и СD) находится воздух или
газ. При движении пластинки CD появляется сила, действующая на пластинку АВ и направленная в сторону движения. Эта сила и есть сила вязкости.

Слайд 34

Вязкость газа

Будем представлять себе газ неограниченным и движущимся стационарно плоскопараллельными слоями в

Вязкость газа Будем представлять себе газ неограниченным и движущимся стационарно плоскопараллельными слоями
горизонтальном направлении. Скорость этого макроскопического движения u меняется в направлении, перпендикулярном к слоям. Это направление мы примем за ось X Таким образом, мы предполагаем, что u = u(х).

Слайд 35

Вязкость газа

При наличии упорядоченного движения газа средняя скорость молекулы не нуль, а

Вязкость газа При наличии упорядоченного движения газа средняя скорость молекулы не нуль,
равна u = u(х). С этой скоростью связано количество движения mu, которым обладает рассматриваемая молекула. Такое количество движения условимся называть упорядоченным.
Молекулы, лежащие над плоскостью А В, обладают большим упорядоченным количеством движения, чем молекулы, расположенные под ней.
Переходя из пространства над плоскостью MN в пространство под ней, молекулы передают часть своего упорядоченного количества движения молекулам, с которыми они сталкиваются в пространстве ниже плоскости МN.

Слайд 36

Вязкость газа

 

Вязкость газа

Слайд 37

Вязкость газа

Так как λ обратно пропорциональна n, то отсюда следует, что вязкость

Вязкость газа Так как λ обратно пропорциональна n, то отсюда следует, что
и теплопроводность не зависят от плотности газа. К такому выводу впервые пришел Максвелл, и этот вывод показался ему парадоксальным. Однако опыты, поставленные самим Максвеллом и другими физиками, подтвердили указанный вывод.

Слайд 38

Вязкость газа

Независимость вязкости и теплопроводности от плотности газа имеет простое объяснение. Если

Вязкость газа Независимость вязкости и теплопроводности от плотности газа имеет простое объяснение.
плотность газа велика, то в переносе импульса и энергии участвует много молекул. Однако передача импульса и энергии за время между двумя последовательными столкновениями производится малыми порциями и на малые расстояния. Если же плотность мала, то уменьшается и число молекул, участвующих в переносе. Но это уменьшение полностью компенсируется тем, что теперь молекулы переносят импульс и энергию более крупными порциями и на большие расстояния.

Слайд 39

Явления в разреженных газах

Если средняя длина свободного пробега λ того же порядка,

Явления в разреженных газах Если средняя длина свободного пробега λ того же
что и характерный линейный размер сосуда d, в котором заключен газ, или больше, то состояние газа называют вакуумом. Воздух в комнате, например, при атмосферном давлении в состоянии вакуума не находится, так как в этом случае λ ~ 10-5 см. Однако в сосуде, линейные размеры которого меньше 10-5 см (поры дерева и многих других пористых тел), тот же воздух уже находится в условиях вакуума.

Слайд 40

Явления в разреженных газах

Различают три вида вакуума:
1) низкий, когда λ меньше

Явления в разреженных газах Различают три вида вакуума: 1) низкий, когда λ
характерного размера сосуда d, но приближается к нему;
2) средний, когда λ сравнима с d,
3) высокий (или глубокий), когда λ значительно больше d.
Газ в состоянии высокого вакуума называется ультраразреженным.

Слайд 41

Явления в разреженных газах

 

Явления в разреженных газах

Слайд 42

Явления в разреженных газах

 

Явления в разреженных газах

Слайд 43

Явления в разреженных газах

Поток молекул газа через отверстие в стенке называется эффузионным

Явления в разреженных газах Поток молекул газа через отверстие в стенке называется
потоком, если размеры отверстия и толщина стенки малы по сравнению с длиной свободного пробега λ.
Допустим теперь, что по разные стороны перегородки находится один и тот же газ, но при разных давлениях и температурах. Если газ находится в состоянии высокого вакуума, то возникнут два эффузионных потока: из А в В и из В в А

Слайд 44

Явления в разреженных газах

 

Явления в разреженных газах

Слайд 45

Явления в разреженных газах

Пусть два сосуда 1 и 2 соединены между собой

Явления в разреженных газах Пусть два сосуда 1 и 2 соединены между
трубкой и поддерживаются при разных температурах Т1 и Т2.
Когда поперечное сечение трубки очень велико по сравнению с длиной свободного пробега,
Условие равновесия носит гидродинамический характер: должны быть равны давления Р1 и P2 в обоих сосудах. В противоположном случае, когда длина свободного пробега очень велика по сравнению с поперечными размерами трубки, гидродинамический подход неприменим.

Слайд 46

Явления в разреженных газах

 

Явления в разреженных газах

Слайд 47

Явления в разреженных газах

Допустим теперь, что сосуд разделен пористой перегородкой на две

Явления в разреженных газах Допустим теперь, что сосуд разделен пористой перегородкой на
части, поддерживаемые при разных температурах Т1 и Т2. Пусть размеры пор малы по сравнению с длиной свободного пробега.
Тогда, если первоначальные давления Р1 и Р2 были равны, то газ начнет перетекать в направлении от более низкой к более высокой температуре. Это явление называется тепловой диффузией или эффектом Кнудсена.
Имя файла: Явления-переноса-в-газах.pptx
Количество просмотров: 34
Количество скачиваний: 0