Презентации, доклады, проекты по физике

Полупроводники
Полупроводники
ПОЛУПРОВОДНИКИ Полупроводники- тела, занимающие промежуточное положение между проводниками и диэлектриками по способности передавать электрические заряды. Например: германий, кремний, серое олово и др. При низкой температуре полупроводники не проводят ток и становятся диэлектриками, при повышении температуры в полупроводнике резко увеличивается число носителей электрического заряда, и он становится проводником. Это происходит, потому что атомы полупроводников, таких как кремний и германий, колеблются около своих положений равновесия, и уже про температуре 20*С это движение становится настолько интенсивным, что химические связи между соседними атомами могут разорваться. Характерной особенностью полупроводников является возрастание их проводимости с повышением температуры.
Продолжить чтение
Реальные связи. Курс лекций по теоретической механике
Реальные связи. Курс лекций по теоретической механике
■ Трение скольжения. При действии сдвигающей силы, приложенной к телу, покоящемуся на шероховатой поверхности, возникает сила, противодействующая возможному смещению тела (сила трения сцепления) из равновесного положения или его действительному перемещению (сила трения скольжения) при его движении. Основные законы трения (Амонтона - Кулона): 1. Сила трения лежит в касательной плоскости к соприкасающимся поверхностям и направлена в сторону противоположную направлению, в котором приложенные к телу силы стремятся его сдвинуть или сдвигают в действительности (реактивный характер). 2. Сила трения изменяется от нуля до своего максимального значения Максимальная сила трения пропорциональна коэффициенту трения и силе нормального давления 3. Коэффициент трения есть величина постоянная для данного вида и состояния соприкасающихся поверхностей (f = const). 4. Сила трения в широких пределах не зависит от площади соприкасающихся поверхностей. ■ Способы определения коэффициента трения. 1. Сдвигающая сила изменяется от нуля до своего максимального значения – 0 ≤ T ≤ Tmax, (0 ≤ P ≤ Pmax). 2. Сила нормального давления изменяется от некоторого начального значения до минимального значения – N0 ≥ N ≥ Nmin (G0 ≥ G ≥ Gmin). 3. Сдвигающая сила и сила нормального давления изменяются при изменении угла наклона плоскости скольжения от нуля до максимального значения – 0 ≥ φ ≥ φmax . ■ Угол трения. С учетом силы трения, возникающей при контакте с шероховатой поверхностью полная реакция такой поверхности может рассматриваться как геометрическая сумма нормальной реакции абсолютно гладкой поверхности и силы трения: Угол отклонения полной реакции шероховатой поверхности – угол трения, равный: При изменении направления сдвигающей силы T на опорной поверхности ее поворотом относительно нормали к плоскости полная максимальная реакция шероховатой поверхности описывает конус трения. Активные силы (G, T и др.) можно заменить равнодействующей силой P, имеющей угол отклонения от вертикали α. Можно показать, что равновесие возможно лишь в том случае, когда эта сила остается внутри пространства конуса трения: Условие равновесия по оси x: Psinα ≤ Fтрmax. Из уравнения равновесия по оси у: N = Pcosα. Максимальная сила трения Fтрmax = fN = tgφN = tgφPcosα. Тогда Psinα ≤ tgφPcosα, откуда tgα ≤ tgφ и α ≤ φ. ■ Учет сил трения при решении задач на равновесие. При наличии сил трения: К действующим на объект активным силам и реакциям абсолютно гладких поверхностей добавляются соответствующие силы трения, направленные по общей касательной к контактным поверхностям в сторону, противоположную возможному смещению точки касания объекта относительно опорной шероховатой плоскости. К уравнениям равновесия, составленным для объекта, добавляются выражения для максимальных сил трения в количестве, равном числу сил трения. ■ Пример решения задачи на равновесие с учетом трения. Человек весом G собирается установить легкую лестницу под углом α к вертикали (стене) и взобраться на половину длины лестницы для выполнения работы. Коэффициенты трения в точках контакта лестницы с полом (A) и со стеной (B) равны fA и fB соответственно. Определить предельное значение угла наклона, при котором лестница с человеком может сохранять равновесие. Весом лестницы пренебречь. 1. Выбираем на объект (человек и лестница), отбрасываем связи и заменяем их действие реакциями гладкой поверхности. A B 2. Добавляем активные силы (силу тяжести G). 3. Добавляем силы трения, направленные в сторону, противоположную возможному перемещению контактных точек A и B лестницы под действием приложенной активной силы. 4. Составляем уравнения равновесия: 5. Добавляем выражения для сил трения: 6. Подстановка последних выражений в уравнения равновесия с простыми преобразованиями третьего уравнения дает : 7. Решение первых двух уравнений дает выражения для нормальных реакций: 8. Подстановка выражений для нормальных реакций в третье уравнение равновесия приводит к возможности определения предельного угла наклона α: ■ Определение области равновесия. Задача решена для конкретного положения человека, угол наклона соответствует предельному равновесию (использованы максимальные значения сил трения). С помощью понятия конуса трения, образовываемого полной реакцией шероховатой поверхности и теоремы о трех силах можно определить область возможных равновесных положений человека на лестнице. Для этого достаточно по заданным коэффициентам трения определить углы трения, определяющие предельные положения полной реакции и построить конусы трения. Общая область конусов дает область равновесных положений человека. Хорошо видно, что для более высокого положения человека надо уменьшать угол наклона.
Продолжить чтение
Закон всемирного тяготения
Закон всемирного тяготения
Он появился на свет 14 января 1643 г. в деревушке Вулстроп в семье мелкого фермера, умершего до рождения сына. Младенец был недоношенным; бытуют легенды, что он был так мал, что его поместили в овчинную рукавицу, лежавшую на лавке, из которой он однажды выпал и сильно ударился головкой об пол, а вымыть его можно было в пивной кружке. После серьезной подготовки он в 1660 г. поступил в Кембридж в качестве Subsizzfr'а (так назывались неимущие студенты, которые обязаны были также прислуживать членам колледжа), что не могло не тяготить его. В 1665г. стал магистром искусств. В 27 лет стал профессором Кембриджского университета Впервые объяснил с помощью своего математического метода движения и формы планет, пути комет, приливы и отливы океана. Он первый исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, которых до того времени никто даже не подозревал. Кто этот ученый? Был этот свет кромешной тьмой окутан. Да будет свет! И вот явился Ньютон. А. Поп Какие открытия этого ученого вы знаете?
Продолжить чтение
Закон сохранения механической энергии
Закон сохранения механической энергии
Физическая величина, характеризующая процесс, во время которого сила F деформирует или перемещает тело. С помощью этой величины измеряется изменение энергии систем. Совершение работы может привести к изменению местоположения тел (работа по перемещению, работа по подъеду тел) служит для преодоления сил трения или вызвать ускорение тел (работа по ускорению). Единица:1 H · м (один ньютон*метр) 1 H · м =1 Вт · с (один ватт*секунда)= = 1 Дж (джоуль) 1 Дж равен работе, которая затрачивается, чтобы точка приложения силы в 1 H переместилась на 1 м в направлении перемещения точки. Механическая работа Физическая величина, характеризующая скорость осуществления механической работы. Р - мощность А - работа, t - время. Единица:1 H · м/c (один ньютон*метр в секунду) 1 H · м/c=1Дж/c=1Вт 1 Вт - мощность, которая затрачивается, когда точка приложения силы в 1 H в течение 1 с передвигается на 1 м в направлении движения тела. Механическая мощность Р
Продолжить чтение
Определение тепловой мощности. ВПР, 9 класс
Определение тепловой мощности. ВПР, 9 класс
Металлический образец, находящийся в твёрдом состоянии, поместили в электропечь и начали нагревать. На рисунке приведён график зависимости температуры t этого образца от времени  Известно, что на нагревание образца от начальной температуры до температуры плавления было затрачено количество теплоты 0,4 МДж. Какова масса образца, если его удельная теплота плавления равна 25 кДж/кг? Потери теплоты пренебрежимо малы. В печи сгорели сухие сосновые дрова объемом 0,01 и торф массой 5 кг. Сколько теплоты выделилось в печи? Удельная теплота сгорания сосновых дров 13· 106Дж/кг    удельная теплота сгорания торфа 14· 106Дж/кг   Ответ дайте в МДж. На какой высоте над поверхностью океана летела в самолете футбольная команда в то время, как потенциальная энергия их футбольного мяча в самолете была эквивалентна количеству теплоты, которая выделяется при полном сгорании 1 г нефти? Масса спортивного молота составляет 0,4 кг, удельная теплота сгорания нефти 46· 106Дж/кг   Ответ дайте в км.
Продолжить чтение
Момент силы относительно точки и оси. Теория пар сил. Приведение произвольной системы
Момент силы относительно точки и оси. Теория пар сил. Приведение произвольной системы сил к заданному центру. Теорема Вариньона
Лекция 3 (продолжение – 3.3) Теорема Вариньона о моменте равнодействующей – Если система сил имеет равнодействующую, то момент этой равнодействующей относительно любого центра равен алгебраической сумме моментов сил системы относительно того же центра. Доказательство: Пусть система сил F1, F2, F3 … приводится к равнодействующей, приложенной в точке O. A O Такая система не находится в равновесии (R ≠ 0). Уравновесим эту систему силой R’, равной равнодействующей R, направленной по линии ее действия в противоположную сторону (аксиома о двух силах). Таким образом, система исходных сил F1, F2, F3 … и уравновешивающей силы R’ находится в равновесии и должна удовлетворять уравнениям равновесия, например: Поскольку сила R’, равна равнодействующей R и направлена по линии ее действия в противоположную сторону, то MA(R’) = - MA(R). Подстановка этого равенства в уравнение равновесия дает: или Примеры использования теоремы о моменте равнодействующей: 1. Определение момента силы относительно точки, когда сложно вычислять плечо силы. Например: A Силу F разложим на составляющие F1 и F2. Тогда момент силы F относительно точки A можно вычислить как сумму моментов каждой из сил относительно этой точки: 2. Доказательство необходимости ограничений для II и III форм уравнений равновесия: Если , то система приводится к равнодействующей, при этом она проходит через точку A, т.к. ее момент относительное этой точки должен быть равен нулю (теорема Вариньона). Если при этом , то равнодействующая должна также проходить через точку B. A B Тогда проекция равнодействующей на ось, перпендикулярную AB, и момент равнодействующей относительно точки, лежащей на AB, будут тождественно равны нулю при любом значении равнодействующей. С 9 Лекция 6 Момент силы относительно центра в пространстве. Момент силы относительно оси. Момент пары сил в пространстве. Момент силы относительно центра в пространстве – векторная величина, равная векторному произведению радиуса-вектора, проведенного из центра к точке приложения силы, и вектора силы. По определению векторного произведения вектор момента силы направлен перпендикулярно плоскости, проведенной через центр и силу, в ту сторону, откуда поворот радиуса-вектора к вектору силы на наименьший угол представляется происходящим по часовой стрелке. Модуль вектора момента силы относительно центра равен: Модуль вектора момента силы относительно центра численно равен удвоенной площади треугольника ΔOAB. Момент силы относительно оси – алгебраическая величина, равная произведению проекции вектора силы на плоскость, перпендикулярную оси, на плечо этой проекции относительно точки пересечения оси с плоскостью, взятая со знаком + (плюс), если вращение плоскости под действием силы представляется при взгляде навстречу оси происходящим против часовой стрелки, и со знаком – (минус) в противном случае. Момент силы относительно оси численно равен удвоенной площади треугольника ΔOab. Связь момента силы относительно центра и относительно оси. Модуль вектора момента силы относительно центра, лежащего на оси z, равен удвоенной площади треугольника OAB: Момент силы относительно оси z, равен удвоенной площади треугольника Oab: Треугольник Oab получен проекцией треугольника OAB на плоскость, перпендикулярную оси z, и его площадь связана с площадью треугольника OAB соотношением: , где γ - двугранный угол между плоскостями треугольников. Поскольку вектор момента силы относительно точки перпендикулярен плоскости треугольника OAB, то угол между вектором и осью равен углу γ. Таким образом, момент силы относительно оси есть проекция вектора момента силы относительно центра на эту ось: 18
Продолжить чтение
Техническая учеба по теме: Продольная дифференциальная защита линий
Техническая учеба по теме: Продольная дифференциальная защита линий
Принцип действия продольной дифференциальной защиты основан на непосредственном сравнении векторов токов по концам защищаемого объекта. Для этой цели по концам ЗО устанавливаются ТТ1 и ТТ2 с одинаковыми Ктт. Из рисунка видно, что при внешнем КЗ токи направлены в одну сторону и равны по величине, при внутреннем КЗ они направлены в разные стороны и, как правило, не равны друг другу. Вторичные обмотки ТТ соединяются при помощи соединительного кабеля и подключаются к дифференциальному реле таким образом, чтобы при внешних КЗ ток в реле был равен , а при внутренних . . Продольная дифференциальная защита линий Первичные токи в начале и в конце линии равны по величине и направлены в одну сторону. Вторичные токи каждого ТТ замыкаются через обмотку реле Р и проходят по ней в противоположных направлениях. Ток в реле равен геометрической разности вторичных токов: Аналогичными образам токи протекают через защиту при качаниях и токах нагрузки. Соответственно, по принципу действия защита не реагирует на внешние КЗ, токи нагрузки и качания. В действительности ТТ работают с погрешностью, поэтому в реле появляется ток небаланса: Внешнее КЗ и нормальный режим
Продолжить чтение