Элементы алгебры логики

Содержание

Слайд 2

Ключевые слова

алгебра логики
высказывание
логическая операция
конъюнкция
дизъюнкция
отрицание
логическое выражение

Ключевые слова алгебра логики высказывание логическая операция конъюнкция дизъюнкция отрицание логическое выражение таблица истинности законы логики
таблица истинности
законы логики

Слайд 3

Клод Шеннон (1916-2001). Его исследования позволили применить алгебру логики в вычислительной технике

Логика

Аристотель

Клод Шеннон (1916-2001). Его исследования позволили применить алгебру логики в вычислительной технике
(384-322 до н.э.). Основоположник формальной логики (понятие, суждение, умозаключение).

Джордж Буль (1815-1864). Создал новую область науки - Математическую логику (Булеву алгебру или Алгебру высказываний).

Слайд 4

Алгебра - наука об общих операциях, аналогичных сложению и умножению, которые могут

Алгебра - наука об общих операциях, аналогичных сложению и умножению, которые могут
выполняться над разнообразными математическими объектами – числами, многочленами, векторами и др.

Алгебра

Слайд 5

Высказывание - это предложение на любом языке, содержание которого можно однозначно определить

Высказывание - это предложение на любом языке, содержание которого можно однозначно определить
как истинное или ложное.

В русском языке высказывания выражаются повествовательными предложениями:
Земля вращается вокруг Солнца.
Москва - столица.

Побудительные и вопросительные предложения высказываниями не являются.
Без стука не входить!
Откройте учебники.
Ты выучил стихотворение?

Высказывание

Но не всякое повествовательное предложение является высказыванием:
Это высказывание ложное.

Слайд 6

Высказывание или нет?

Зимой идет дождь.
Снегири живут в Крыму.
Кто к нам пришел?
У треугольника

Высказывание или нет? Зимой идет дождь. Снегири живут в Крыму. Кто к
5 сторон.
Как пройти в библиотеку?
Переведите число в десятичную систему.
Запишите домашнее задание

Слайд 7

Алгебра логики определяет правила записи, вычисления значений, упрощения и преобразования высказываний.
В алгебре

Алгебра логики определяет правила записи, вычисления значений, упрощения и преобразования высказываний. В
логики высказывания обозначают буквами и называют логическими переменными.
Если высказывание истинно, то значение соответствующей ему логической переменной обозначают единицей (А = 1), а если ложно - нулём (В = 0).
0 и 1 называются логическими значениями.

Алгебра логики

Слайд 8

Простые и сложные высказывания

Высказывания бывают простые и сложные.
Высказывание называется простым, если никакая

Простые и сложные высказывания Высказывания бывают простые и сложные. Высказывание называется простым,
его часть сама не является высказыванием.
Сложные (составные) высказывания строятся из простых с помощью логических операций.

Слайд 9

Конъюнкция - логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание,

Конъюнкция - логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание,
являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.
Другое название: логическое умножение.
Обозначения: ∧ , ×, &, И.

Логические операции

Таблица истинности:

Графическое представление

A

B

А&В

Слайд 10

Дизъюнкция - логическая операция, которая каждым двум высказываниям ставит в соответствие новое

Дизъюнкция - логическая операция, которая каждым двум высказываниям ставит в соответствие новое
высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны.
Другое название: логическое сложение.
Обозначения: V, |, ИЛИ, +.

Логические операции

Таблица истинности:

Графическое представление

A

B

АVВ

Слайд 11

Инверсия - логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание,

Инверсия - логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание,
значение которого противоположно исходному.
Другое название: логическое отрицание.
Обозначения: НЕ, ¬ , ¯ .

Логические операции имеют следующий приоритет:
инверсия, конъюнкция, дизъюнкция.

Логические операции

Таблица истинности:

Графическое представление

A

Ā

Слайд 12

Пусть А = «На Web-странице встречается слово "крейсер"», В = «На Web-странице

Пусть А = «На Web-странице встречается слово "крейсер"», В = «На Web-странице
встречается слово "линкор"».
В некотором сегменте сети Интернет 5000000 Web-страниц. В нём высказывание А истинно для 4800 страниц, высказывание В - для 4500 страниц, а высказывание АVВ - для 7000 страниц.
Для какого количества Web-страниц в этом случае будут истинны следующие выражения и высказывание?
а) НЕ (А ИЛИ В);
б) А & B;
в) На Web-странице встречается слово "крейсер" И НЕ встречается слово "линкор".

Решаем задачу

Слайд 13

5000000 – 7000 = 4 993 000 Web-страниц НЕ (А ИЛИ В)

5000000 – 7000 = 4 993 000 Web-страниц НЕ (А ИЛИ В)
A = 4800, B = 4500.
4800 + 4500 = 9300

4800 – 2300 = 2500 Web-страниц

Представим условие задачи графически:

На 2500 Web-страницах встречается слово "крейсер" И НЕ встречается слово "линкор".

5 000 000

7 000

НЕ (А ИЛИ В)

Сегмент Web-страниц

A

B

A&B

9300 – 7000 = 2300 Web-страниц A&B

A

И

А ИЛИ В

Слайд 14

Высказывание — это предложение на любом языке, содержание которого можно однозначно определить

Высказывание — это предложение на любом языке, содержание которого можно однозначно определить
как истинное или ложное.
Основные логические операции, определённые над высказываниями: инверсия, конъюнкция, дизъюнкция.

Таблицы истинности для основных логических операций:

При вычислении логических выражений сначала выполняются действия в скобках. Приоритет выполнения логических операций: ¬, &, V.

Самое главное

Слайд 15

Опорный конспект

Инверсия

Конъюнкция

Дизъюнкция

Высказывание – это предложение на любом языке, содержание которого
можно

Опорный конспект Инверсия Конъюнкция Дизъюнкция Высказывание – это предложение на любом языке,
однозначно определить как истинное или ложное.

Приоритет выполнения логических операций: ¬, &, V.

Основные логические
операции

Имя файла: Элементы-алгебры-логики.pptx
Количество просмотров: 26
Количество скачиваний: 0