Задачи математического программирования

Содержание

Слайд 2

1. Место математических моделей в теории управления

1. Место математических моделей в теории управления

Слайд 3

2. Классификация задач принятия решений

Основные классификационные признаки
1. Число целей операции,

2. Классификация задач принятия решений Основные классификационные признаки 1. Число целей операции,
преследуемых одной оперирующей стороной
2. Наличие или отсутствие зависимости критерия оптимальности от времени
3. Наличие случайных и неопределенных факторов, влияющих на исход операции - «определенность - риск - неопределенность»

Слайд 4

По первому классификационному признаку ЗПР делятся на
- одноцелевые или однокритериальные (скалярные)
- многоцелевые

По первому классификационному признаку ЗПР делятся на - одноцелевые или однокритериальные (скалярные) - многоцелевые или многокритериальные
или многокритериальные

Слайд 5

По второму классификационному признаку ЗПР делятся на
- статические
- динамические

По второму классификационному признаку ЗПР делятся на - статические - динамические

Слайд 6

По третьему классификационному признаку ЗПР делятся на
- детерминированные — принятие решений при

По третьему классификационному признаку ЗПР делятся на - детерминированные — принятие решений
определенности
- стохастические — принятие решений в условиях риска
- принятие решений в условиях неопределенности

Слайд 7

3. Классификация математических моделей
Математическая модель – это система математических соотношений, приближенно, в

3. Классификация математических моделей Математическая модель – это система математических соотношений, приближенно,
абстрактной форме описывающих изучаемый процесс или систему

Слайд 8

Математическая модель принятия решения представляет собой формализацию схемы:
? : ? ×

Математическая модель принятия решения представляет собой формализацию схемы: ? : ? ×
? → А,
где
? — множество допустимых альтернатив,
? — множество возможных состояний среды,
А — множество возможных исходов.
(?, ?), где ? ∈ ?, ? ∈ ? , соответствует определенный исход ? ∈ ?.

Слайд 9

Основные этапы построения ММ:

1. Определение цели
2. Определение параметров модели
3. Формирование управляющих переменных
4.

Основные этапы построения ММ: 1. Определение цели 2. Определение параметров модели 3.
Определение области допустимых решений
5. Выявление неизвестных факторов
6. Выражение цели через управляющие переменные, параметры и неизвестные факторы, т.е. формирование целевой функции

Слайд 10

Решить задачу — значит найти такое
? ∈ Х ,
чтобы при

Решить задачу — значит найти такое ? ∈ Х , чтобы при
данных фиксированных параметрах
y ∈ Y,
значение ? ∈ ?. было оптимальным

Слайд 11

Основные принципы построения ММ:

1. Необходимо согласовать точность и подробность модели
2. Математическая модель

Основные принципы построения ММ: 1. Необходимо согласовать точность и подробность модели 2.
должна отражать существенные черты исследуемого явления и при этом не должна его сильно упрощать.
3. Математическая модель не может быть полностью адекватна реальному явлению, поэтому для его исследования лучше использовать несколько моделей, для построения которых применены разные математические методы.
4. Математическая модель должна быть устойчивой, т.е. сохранять свои свойства и структуру при этих воздействиях.
Имя файла: Задачи-математического-программирования.pptx
Количество просмотров: 82
Количество скачиваний: 0