Слайд 2Deterministic finite automata
Deterministic finite automaton (DFA) consists of three parts: a tape,
a tape head (or, simply, head), and a finite control.
Слайд 3Deterministic finite automata
Слайд 4Deterministic finite automata
The tape head scans the tape, reads symbols from the
tape, and passes the information to the finite control.
Слайд 5Deterministic finite automata
At each move of the DFA, the head scans one
cell of the tape and reads the symbol in the cell, and then moves to the next cell to the right.
Слайд 6Deterministic finite automata
Слайд 7Deterministic finite automata
Then, it determines, from the current state and the symbol
read by the tape, how the state is changed to a new state.
Слайд 8Deterministic finite automata
Слайд 9Deterministic finite automata
Слайд 11Deterministic finite automata
When the DFA halts, it accepts the input string if
it halts in one of the final states.
Otherwise, the input string is rejected.
Слайд 13Deterministic finite automata
The transition diagram of a DFA is an alternative way
to represent the DFA.
Слайд 26Nondeterministic finite automata
Слайд 27Nondeterministic finite automata
Слайд 28Nondeterministic finite automata
Слайд 29Nondeterministic finite automata
Слайд 30Nondeterministic finite automata
Слайд 31Nondeterministic finite automata
Слайд 32Nondeterministic finite automata
NFA’s, like DFA’s, can also be represented by transition
diagrams.
In the transition diagram, we still use a vertex to represent a state and a labeled edge to represent a move, except that we allow multiple edges from one vertex to other vertices with the same label.
Слайд 33Nondeterministic finite automata
Слайд 34Nondeterministic finite automata
Слайд 35Nondeterministic finite automata
Слайд 36Nondeterministic finite automata
Слайд 38Nondeterministic finite automata
Слайд 40Nondeterministic finite automata
Some of these computation paths lead to final states
and some do not.
Слайд 41Nondeterministic finite automata