- Главная
- Математика
- Движение в пространстве

Содержание
- 2. Теория
- 3. Основные теоремы о задании движений пространства: Теорема 1. Пусть в пространстве даны два равных треугольника ABC
- 4. Неподвижные точки движений пространства. Важной характеристикой движения пространства является множество его неподвижных точек. Здесь могут представиться
- 5. Виды движения в пространстве:
- 10. Скачать презентацию
Слайд 3Основные теоремы о задании движений пространства:
Теорема 1. Пусть в пространстве даны два
Основные теоремы о задании движений пространства:
Теорема 1. Пусть в пространстве даны два

равных треугольника ABC и A'B'C'. Тогда существуют два и только два таких движения пространства, которые переводят A в A', B в B', C в C'. Каждое из этих движений получается из другого с помощью композиции его с отражением в плоскости A'B'C'
Теорема 2. Пусть в пространстве заданы два равных тетраэдра ABCD и A'B'C'D'. Тогда существует единственное движение пространства (такое, что ((A) = A', ((B) = B', ((C) = C', ((D) = D'
Теорема 2. Пусть в пространстве заданы два равных тетраэдра ABCD и A'B'C'D'. Тогда существует единственное движение пространства (такое, что ((A) = A', ((B) = B', ((C) = C', ((D) = D'
Слайд 4Неподвижные точки движений пространства.
Важной характеристикой движения пространства является множество его неподвижных точек.
Неподвижные точки движений пространства.
Важной характеристикой движения пространства является множество его неподвижных точек.

Здесь могут представиться лишь следующие пять случаев:
1.У движения неподвижных точек нет (нетождественный параллельный перенос)
2.Движение имеет лишь одну неподвижную точку (центральная симметрия)
3.Множество неподвижных точек движения пространства является прямой (поворот вокруг прямой)
4.Множество неподвижных точек движения пространства является плоскостью (зеркальная симметрия)
5.Множество неподвижных точек движения пространства является всем пространством (тождественное движение)
2.Движение имеет лишь одну неподвижную точку (центральная симметрия)
3.Множество неподвижных точек движения пространства является прямой (поворот вокруг прямой)
4.Множество неподвижных точек движения пространства является плоскостью (зеркальная симметрия)
5.Множество неподвижных точек движения пространства является всем пространством (тождественное движение)
Слайд 5Виды движения в пространстве:
Виды движения в пространстве:

- Предыдущая
Развитие психики человекаСледующая -
Pet. Preliminary exam test



ЕГЭ. Математика. Задание № 5. Решение простейших тригонометрических уравнений
Прогрессия. Алгебраический анзац
Презентация на тему Функция у=к/х и её график
Презентация на тему Деление обыкновенных дробей (6 класс)
Edukacja matematyczna
Презентация на тему Умножаем и делим на 10, 100, 1000 (3 класс)
Презентация на тему Квадратичная функция, её свойства и график
Вписанный угол
Интерактивный плакат Треугольник
Реальная математика. Геометрия. ГИА-2014
Формулы сокращенного умножения. Интерактивный плакат
Диаграммы
Метод резолюций в алгебре высказываний
Многочлены. Задания
Устно вычислите значение производной
Основные понятия комбинаторики. Факториал. Вычисление факториала
Свойства логарифмов
Основные понятия математической статистики. Лекция 6
Цирк. Геометрические фигуры
Доли и дроби
Призма
Бесконечно убывающая геометрическая прогрессия
Тригонометрические уравнения Однородные тригонометрические уравнения
Задания на логическое мышление
Обработка оптических изображений. Несколько слов о статистике
Счет до 1000
Презентация на тему ГИА 2013. Модуль ГЕОМЕТРИЯ (№10)
Метрологические понятия