Содержание
- 2. Вычисление производной путем логарифмирования. Функцию вида называют показательно-степенной или сложной показательной функцией.
- 5. 1. Продифференцировать функцию:
- 6. 2. Продифференцировать функцию:
- 8. Ответ:
- 9. 3. Продифференцировать функцию:
- 13. Производная неявной функции. явная функция неявная функция y=f(x) y-f(x)=0 или F(x,y)=0
- 14. Пусть
- 16. 4. Продифференцировать функцию: Ответ:
- 17. Производная функции, заданная параметрически. Пусть - обратная для функции Тогда функцию y=f(x) можно рассматривать как сложную
- 18. По правилу дифференцирования сложной функции, получим: теорема о дифференцировании обратной функции
- 20. Скачать презентацию

















Представление данных. Генеральная совокупность, выборка. Понятие о задачах математической статистики
Число и цифра 9
Лекция_04
Основы логистики
Аналитическая панель
Презентация по математике "Величины. Масса" -
Формирование элементарных математических представлений
Функции и их графики
Лекции 19. Алгоритмы Маркова
Среднее арифметическое. Среднее значение величины
Перевод из 2n системы в двоичную и обратно Перевод целых чисел Перевод дробных чисел Перевод смешанных чисел Перевод чисел в
Симметрия в пространстве. Уравнение Сферы
Письменные приемы вычислений
Решение систем линейных неравенств с двумя переменными
Урок математики в 1 классе
قدرمطلقی درجه اول
Алгоритмы на графах
Формулы теории вероятностей
Первый признак равенства треугольников
Треугольник. Окружность
Степенные ряды. Лекция 3.9
Сумма n первых членов геометрической прогрессии (9 класс)
Метод линейного сплайна
Таблица классов и разрядов. Свойства сложения
Свойства уравнения
Презентация на тему Четырехугольники вокруг нас
Задачи на проценты
Описание линейной дискретной системы в частотной области (ЛДС). Частотные характеристики ЛДС