Слайд 2Мини-КР
1. Решить ОЛДУ
2. Найти вид частного решения НЛДУ

Слайд 3Введение
Существуют методы решения систем дифференциальных уравнений, сходные с теорией решения ЛДУ.

Слайд 4Основные понятия теории СЛДУ
Определение. Нормальная система ДУ называется линейной, если в каждом

ее уравнении функции
 линейны относительно неизвестных функций, т. е. если она имеет вид: 
Запишем систему в векторной форме:
где 
При получим систему ОЛДУ вида 
Слайд 5Свойства решений СОЛДУ
Обозначим через Y множество всех решений СОЛДУ, Y – линейное

пространство.
Слайд 6Теорема о структуре общего решения СОЛДУ

Слайд 7Теорема о структуре общего решения СНЛДУ
Если 1) - ФСР СОЛДУ 
 2)

– некоторое решение СНЛДУ
то общее решение СНЛДУ находится по формулам:
или 
Для поиска частного решения можно воспользоваться методом вариации произвольной постоянной (из СОЛДУ): 
Слайд 8 СНЛДУ имеет решение 
Тогда т.е.
Т.к. то 
Отсюда 
Проинтегрируем обе части:
t0 –

любое число (a,b).
Т.О. - формула Коши. 
 
Слайд 10ОСЛДУ с постоянными коэффициентами

Слайд 274. Найти общее решение СНЛДУ используя метод Эйлера для СОЛДУ и подбор

решений для СНЛДУ
Слайд 305. Найти общее решение СОЛДУ методом Эйлера

Слайд 326. Найти общее решение СОЛДУ методом Эйлера
