Презентации, проекты, доклады в PowerPoint на любую тему

Презентация на тему Изобарный изотермический и изохорный процессы
Презентация на тему Изобарный изотермический и изохорный процессы
Уравнения состояния идеального газа Уравне́ние состоя́ния — уравнение, связывающее между собой термодинамические (макроскопические) параметры системы, такие, как температура, давление, объём, химический потенциал и др. Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. Модель идеального газа широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур или давлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами. С помощью модели идеального газа можно исследовать процессы, в которых масса газа и один из трех параметров - давление, объем или температура - остаются неизменными. Количественные зависимости между двумя параметрами газа при фиксированном значении третьего называют газовыми законами. Процессы, протекающие при неизменном значении одного из параметров, называют изопроцессами (от греческого слова «изос» - равный). Правда, в действительности ни один процесс не может протекать при строго фиксированном значении какого-либо параметра. Всегда имеются те или иные воздействия, нарушающие постоянство температуры, давления или объема. Лишь в лабораторных условиях удается поддерживать постоянство того или иного параметра с высокой точностью, но в действующих технических устройствах и в природе это практически неосуществимо. Изопроцесс - это идеализированная модель реального процесса, которая только приближенно отражает действительность.
Продолжить чтение
Презентация на тему Изопроцессы.Адиабатический процесс. Круговой процесс.Обратимые и необратимые процессы.
Презентация на тему Изопроцессы.Адиабатический процесс. Круговой процесс.Обратимые и необратимые процессы.
Адиабатическим называется процесс, при котором отсутствует теплообмен (δQ=0) между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распространения звуковой волны настолько велика, что обмен энергией между волной и средой произойти не успевает. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д. Из первого начала термодинамики (δQ=dU+δA) для адиабатического процесса следует, что (1) т. е. внешняя работа совершается за счет изменения внутренней энергии системы. Используя выражения и , для произвольной массы газа перепишем уравнение (1) в виде (2) Продифференцировав уравнение состояния для идеального газа получим (3) Исключим из (2) и (3) температуру Т. Разделив переменные и учитывая, что Сp/СV=γ ( ), найдем Интегрируя это уравнение в пределах от p1 до p2 и соответственно от V1 до V2, а затем потенцируя, придем к выражению Так как состояния 1 и 2 выбраны произвольно, то можно записать (4) Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона. Для перехода к переменным Т, V или p, Т исключим из (4) с помощью уравнения Клапейрона — Менделеева соответственно давление или объем: (5) (6)
Продолжить чтение
Презентация на тему Измерительные приборы, показывающие содержание различных веществ в воде.
Презентация на тему Измерительные приборы, показывающие содержание различных веществ в воде.
TDS предназначен для измерения солесодержащих примесей в воде TDS метр (total dissolved solids) – это прибор для измерения общего количества, растворенных в воде соединений, на один миллион частиц воды. Если коротко, TDS метр – это ни что иное, как индикатор качества воды. Области применения TDS метра различны: — измерение уровня содержания солей в воде; — измерение общей жесткости воды — проверка эффективности работы очистительных приборов, в том числе, работающих систем обратного осмоса. Dual TDS Monitor 1 - он-лайн монитор эффективности очистки воды Прибор предназначен для измерения общей минерализации (солесодержания), т.е. количества частиц, растворенных в воде соединений (total dissolved solids) на один миллион частиц воды - ppm (parts per million) в магистрали очистительной системы воды - до ее очистки и после, что позволяят делать оценку эффективности работы очистительной системы. Принцип действия Dual TDS Monitor 1 основан на прямой зависимости электроводности раствора (силы тока в постоянном электрическом поле, создаваемом электродами прибора) от количества растворенных в воде соединений (parts per million, ppm; 1 ppm=1мг/л). Устанавливается в магистраль очистительной системы за несколько минут.
Продолжить чтение
Презентация на тему История создания тепловых двигателей
Презентация на тему История создания тепловых двигателей
В древности люди приводили в действие простейшие механизмы руками или с помощью животных. Затем они научились использовать силу ветра, плавая на парусных кораблях. Они научились так же использовать ветер для вращения ветряных мельниц, перемалывающих зерно в муку. Позже они стали применять энергию течения воды в реках для вращения водяных колес. Эти колеса перекачивали и поднимали воду или приводили в действие различные механизмы. История появления тепловых двигателей уходит в далекое прошлое. Говорят, еще две с лишним тысячи лет назад, в III веке до нашей эры, великий греческий механик и математик Архимед построил пушку, которая стреляла с помощью пара. Рисунок пушки Архимеда и ее описание были найдены спустя 18 столетий в рукописях великого итальянского ученого, инженера и художника Леонардо да Винчи. Как же стреляла эта пушка? Один конец ствола сильно нагревали на огне. Затем в нагретую часть ствола наливали воду. Вода мгновенно испарялась и превращалась в пар. Пар, расширяясь, с силой и грохотом выбрасывал ядро. Для нас интересно здесь то, что ствол пушки представлял собой цилиндр, по которому как поршень скользило ядро. Предпосылки возникновения тепловых двитателей Примерно тремя столетиями позже в Александрии — культурном и богатом городе на африканском побережье Средиземного моря — жил и работал выдающийся ученый Герон, которого историки называют Героном Александрийским. Герон оставил несколько сочинений, дошедших до нас, в которых он описал различные машины, приборы, механизмы, известные в те времена. В сочинениях Герона есть описание интересного прибора, который сейчас называют Героновым шаром. Он представляет собой полый железный шар, закрепленный так, что может вращаться вокруг горизонтальной оси. Из закрытого котла с кипящей водой пар по трубке поступает в шар, из шара он вырывается наружу через изогнутые трубки, при этом шар приходит во вращение. Внутренняя энергия пара превращается в механическую энергию вращения шара. Геронов шар — это прообраз современных реактивных двигателей. Изобретение Герона
Продолжить чтение
Презентация на тему Гармонические колебания. гармонический осцилятор. Пружинный физический и математический маятники
Презентация на тему Гармонические колебания. гармонический осцилятор. Пружинный физический и математический маятники
5. Механические колебания и волны 5.1. Гармонические колебания и их характеристики Колебаниями называются движения или процессы, которые характеризуются опреде­ленной повторяемостью во времени. Гармоническими колебаниями называются колебания, при которых колеб­лющаяся величина изменяется со временем по закону синуса или косинуса. А — амплитудой колебания, максимальное значение величины, ω0 — круговая (угловая) частота, ϕ — начальная фаза колебания, в мо­мент времени t=0, (ω0t+ϕ) — фаза колебания в момент времени t. - период колебаний - частота колебаний Связь между угловой и обычной частотой колебаний: Единица частоты — герц (Гц): 1 Гц — частота периодического процесса, при кото­рой за 1 с совершается один цикл процесса.
Продолжить чтение
Презентация на тему Физика твердого тела Кристаллофизика
Презентация на тему Физика твердого тела Кристаллофизика
Фи́зика твёрдого те́ла Фи́зика твёрдого те́ла — раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики. Развитие стимулировалась широким спектром важных задач прикладного характера, в частности, развитием полупроводниковой техники. В настоящее время физика твёрдого тела разбилась на большое количество более мелких направлений. Для начала вспомним, что в обычных условиях все объекты окружающие нас находятся в трех основных агрегатных состояниях: жидком, твердом и газообразном (конечно, есть еще и плазма, но с ней в повседневной жизни мы встречаемся не так-то часто). Из них нас сейчас интересует твердое состояние вещества. В отличие от газообразных и жидких тел, твердые тела, в обычных условиях, сохраняют свои объем и форму. В свою очередь все твердые тела можно разделить на две большие категории: аморфные и кристаллические тела.  К аморфным веществам относятся стекла, твердые смолы и т д., а к кристаллическим веществам относятся, например, поваренная соль, медный купорос, графит и тд. Кристаллические тела (кристаллы) — это твердые тела, в которых атомы расположены в соответствии с определенным правилом и образуют дальний порядок. Это значит, что в кристаллах атомы образуют периодически повторяющуюся последовательность вдоль направлений пространственных осей. У аморфных тел дальний порядок отсутствует.
Продолжить чтение
Презентация на тему Физика твердого тела. Рост и дефекты кристаллов
Презентация на тему Физика твердого тела. Рост и дефекты кристаллов
Рост кристаллов Вы знаете, конечно, что вода (при нормальном давлении) замерзает при 0°. Если понижается температура, то точно при 0° вода начнет замерзать, превращаться в кристаллы льда. Пока вся вода не замерзнет, температура ее не будет понижаться дальше. Если, наоборот, нагревать кристалл льда до 0°, он останется неизменным. Как только температура достигнет 0°, кристалл сразу начнет таять. Сколько бы мы ни грели дальше, температура льда не будет повышаться, пока весь лед не растает. Лишь когда весь кристалл, растаяв, превратится в воду (иначе говоря, пока не распадется строй всех частиц), температура воды может начать повышаться. Любое кристаллическое вещество плавится и кристаллизуется при строго определенной температуре плавления: железо — при 1530°, олово — при 232°, кварц — при 1713°, ртуть— при минус 38°. У некристаллических твердых тел нет постоянной температуры плавления (а значит, и температуры кристаллизации), при нагревании они постепенно размягчаются.. Способы выращивания кристаллов Один из них – охлаждение насыщенного горячего раствора. При каждой температуре в данном количестве растворителя (например, в воде) может раствориться не более определенного количества вещества. Если раствор охлаждать медленно, зародышей образуется немного, и, обрастая постепенно со всех сторон, они превращаются в красивые кристаллики правильной формы. При быстром же охлаждении образуется много зародышей, причем частички из раствора будут «сыпаться» на поверхность растущих кристалликов, как горох из порванного мешка; конечно, правильных кристаллов при этом не получится, потому что находящиеся в растворе частицы могут просто не успеть «устроиться» на поверхности кристалла на положенное им место. Другой метод получения кристаллов – постепенное удаление воды из насыщенного раствора. «Лишнее» вещество при этом кристаллизуется. И в этом случае, чем медленнее испаряется вода, тем лучше получаются кристаллы
Продолжить чтение
Презентация на тему Электромагнитные явления
Презентация на тему Электромагнитные явления
Известно: Магнитное действие наблюдается всегда, когда существует электрический ток магнитное действие тока с помощью магнитной стрелки Исследуем: Опыт Эрстеда Вывод: Вокруг любого проводника с током, т.е. движущихся электрических зарядов, существует магнитное поле . Ток следует рассматривать как источник магнитного поля! Вокруг неподвижных электрических зарядов существует только электрическое поле, а вокруг движущихся зарядов – и электрическое, и магнитное. Опыт Эрстеда 2. 1. Что доказывает опыт Эрстеда? 2. Имеет ли значение, где помещена стрелка: под или над проводником? 3. Влияет ли на результат опыта величина силы тока в проводнике? 4. Что изменится, если поменять полярность полюсов источника тока? 5. Как лучше ориентиро- вать проводник для наибольшего откло- нения стрелки? Почему стрелка повернулась? Опыт Эрстеда 2. 1. - + Что доказывает опыт Эрстеда? 2. Имеет ли значение, где помещена стрелка: под или над проводником? 3. Влияет ли на результат опыта величина силы тока в проводнике? 4. Что изменится, если поменять полярность полюсов источника тока? 5. Как лучше ориентиро- вать проводник для наибольшего откло- нения стрелки? Почему стрелка повернулась?
Продолжить чтение