BJT Bipolar Junction Transistor

Содержание

Слайд 2

pnp transistor

pnp transistor

Слайд 3

Large current

Operation of npn transistor

Large current Operation of npn transistor

Слайд 4

Modes of operation of a BJT transistor

Mode BE junction BC junction
cutoff reverse biased reverse biased
linear(active) forward

Modes of operation of a BJT transistor Mode BE junction BC junction
biased reverse biased
saturation forward biased forward biased

Слайд 5

Summary of npn transistor behavior

Summary of npn transistor behavior

Слайд 6

Summary of pnp transistor behavior

Summary of pnp transistor behavior

Слайд 7

Summary of equations for a BJT

IE ≈ IC
IC = βIB
β is the

Summary of equations for a BJT IE ≈ IC IC = βIB
current gain of the transistor ≈ 100
VBE = 0.7V(npn)
VBE = -0.7V(pnp)

Слайд 8

Graphical representation of transistor characteristics

IB

IC

IE

Output
circuit

Input
circuit

Graphical representation of transistor characteristics IB IC IE Output circuit Input circuit

Слайд 9

Input characteristics

Acts as a diode
VBE ≈0.7V

IB

IB

VBE

0.7V

Input characteristics Acts as a diode VBE ≈0.7V IB IB VBE 0.7V

Слайд 10

Output characteristics

IC

IC

VCE

IB = 10μA

IB = 20μA

IB = 30μA

IB = 40μA

Cutoff
region

At a fixed

Output characteristics IC IC VCE IB = 10μA IB = 20μA IB
IB, IC is not dependent on VCE
Slope of output characteristics in linear region is near 0 (scale exaggerated)

Early voltage

Слайд 11

Biasing a transistor

We must operate the transistor in the linear region.
A transistor’s

Biasing a transistor We must operate the transistor in the linear region.
operating point (Q-point) is defined by
IC, VCE, and IB.

Слайд 12

A small ac signal vbe is superimposed on the DC voltage VBE.

A small ac signal vbe is superimposed on the DC voltage VBE.
It gives rise to a collector signal current ic, superimposed on the dc current IC.

Transconductance

ac input signal

(DC input signal 0.7V)

ac output signal

DC output signal

IB

The slope of the ic - vBE curve at the bias point Q is the transconductance gm: the amount of ac current produced by an ac voltage.

Слайд 13

Analysis of transistor circuits at DC

For all circuits: assume transistor operates in

Analysis of transistor circuits at DC For all circuits: assume transistor operates
linear region
write B-E voltage loop
write C-E voltage loop

Example -1

B-E junction acts like a diode
VE = VB - VBE = 4V - 0.7V = 3.3V

IE

IC

IE = (VE - 0)/RE = 3.3/3.3K = 1mA
IC ≈ IE = 1mA
VC = 10 - ICRC = 10 - 1(4.7) = 5.3V

Слайд 14

Example-2

B-E Voltage loop
5 = IBRB + VBE, solve for IB
IB = (5

Example-2 B-E Voltage loop 5 = IBRB + VBE, solve for IB
- VBE)/RB = (5-.7)/100k = 0.043mA
IC = βIB = (100)0.043mA = 4.3mA
VC = 10 - ICRC = 10 - 4.3(2) = 1.4V

IE

IC

IB

β = 100

Слайд 15

Exercise-3

VE = 0 - .7 = -0.7V

IE

IC

IB

β = 50

IE = (VE -

Exercise-3 VE = 0 - .7 = -0.7V IE IC IB β
-10)/RE = (-.7 +10)/10K = 0.93mA
IC ≈ IE = 0.93mA
IB = IB/β = .93mΑ/50 = 18.6μΑ
VC = 10 - ICRC = 10 - .93(5) = 5.35V

Слайд 16

Prob.

Use a voltage divider, RB1 and RB2 to bias VB to

Prob. Use a voltage divider, RB1 and RB2 to bias VB to
avoid two power supplies.
Make the current in the voltage divider about 10 times IB to simplify the analysis. Use VB = 3V and I = 0.2mA.

IB

I

(a) RB1 and RB2 form a voltage divider.
Assume I >> IB I = VCC/(RB1 + RB2)
.2mA = 9 /(RB1 + RB2)
AND
VB = VCC[RB2/(RB1 + RB2)]
3 = 9 [RB2/(RB1 + RB2)], Solve for RB1 and RB2.
RB1 = 30KΩ, and RB2 = 15KΩ.

Слайд 17

Prob.

Find the operating point
Use the Thevenin equivalent circuit for the base

Makes the

Prob. Find the operating point Use the Thevenin equivalent circuit for the
circuit simpler
VBB = VB = 3V
RBB is measured with voltage sources grounded
RBB = RB1|| RB2 = 30KΩ || 15KΩ = . 10KΩ

Слайд 18

Prob.

Write B-E loop and C-E loop

B-E
loop

C-E loop

B-E loop
VBB = IBRBB + VBE

Prob. Write B-E loop and C-E loop B-E loop C-E loop B-E
+IERE
IE =2.09 mA
C-E loop
VCC = ICRC + VCE +IERE
VCE =4.8 V
This is how all DC circuits are analyzed
and designed!

Слайд 19

Exercise-4

(a) Find VC, VB, and VE, given: β = 100, VA =

Exercise-4 (a) Find VC, VB, and VE, given: β = 100, VA
100V

IE = 1 mA
IB ≈ IE/β = 0.01mA
VB = 0 - IB10K = -0.1V
VE = VB - VBE = -0.1 - 0.7 = -0.8V
VC = 10V - IC8K = 10 - 1(8) = 2V

VB

Слайд 20

Example-5

2-stage amplifier, 1st stage has an npn transistor; 2nd stage has an

Example-5 2-stage amplifier, 1st stage has an npn transistor; 2nd stage has
pnp transistor.
IC = βIB
IC ≈ IE
VBE = 0.7(npn) = -0.7(pnp)
β = 100
Find IC1, IC2, VCE1, VCE2
Use Thevenin circuits.

Слайд 21

Example -5

RBB1 = RB1||RB2 = 33K
VBB1 = VCC[RB2/(RB1+RB2)]
VBB1 = 15[50K/150K] =

Example -5 RBB1 = RB1||RB2 = 33K VBB1 = VCC[RB2/(RB1+RB2)] VBB1 =
5V
Stage 1
B-E loop
VBB1 = IB1RBB1 + VBE +IE1RE1
Use IB1 ≈ IE1/ β
5 = IE133K / 100 + .7 + IE13K
IE1 = 1.3mA

IB1

IE1

Слайд 22

Example -5

C-E loop
neglect IB2 because it is IB2 << IC1

IE1

IC1

VCC = IC1RC1

Example -5 C-E loop neglect IB2 because it is IB2 IE1 IC1
+ VCE1 +IE1RE1
15 = 1.3(5) + VCE1 +1.3(3)
VCE1= 4.87V

Слайд 23

Example-5

Stage 2
B-E loop

IB2

IE2

VCC = IE2RE2 + VEB +IB2RBB2 + VBB2
15 = IE2(2K)

Example-5 Stage 2 B-E loop IB2 IE2 VCC = IE2RE2 + VEB
+ .7 +IB2 (5K) + 4.87 + 1.3(3)
Use IB2 ≈ IE2/ β, solve for IE2
IE2 = 2.8mA

Слайд 24

Example-5

Stage 2
C-E loop

IE2

IC2

VCC = IE2RE2 + VEC2 +IC2RC2
15 = 2.8(2) + VEC2

Example-5 Stage 2 C-E loop IE2 IC2 VCC = IE2RE2 + VEC2
+ 2.8 (2.7)
solve for VEC2
VCE2 = 1.84V

Слайд 25

Summary of DC problem

Bias transistors so that they operate in the linear

Summary of DC problem Bias transistors so that they operate in the
region B-E junction forward biased, C-E junction reversed biased
Use VBE = 0.7 (npn), IC ≈ IE, IC = βIB
Represent base portion of circuit by the Thevenin circuit
Write B-E, and C-E voltage loops.
For analysis, solve for IC, and VCE.
For design, solve for resistor values (IC and VCE specified).

Слайд 26

Summary of npn transistor behavior

npn

collector

emitter

base

IB

IE

IC

small
current

large current

+
VBE
-

Summary of npn transistor behavior npn collector emitter base IB IE IC

Слайд 27

Transistor as an amplifier

Transistor circuits are analyzed and designed in terms

Transistor as an amplifier Transistor circuits are analyzed and designed in terms
of DC and ac versions of the same circuit.
An ac signal is usually superimposed on the DC circuit.
The location of the operating point (values of IC and VCE) of the transistor affects the ac operation of the circuit.
There are at least two ac parameters determined from DC quantities.

Слайд 28

A small ac signal vbe is superimposed on the DC voltage VBE.

A small ac signal vbe is superimposed on the DC voltage VBE.
It gives rise to a collector signal current ic, superimposed on the dc current IC.

Transconductance

ac input signal

(DC input signal 0.7V)

ac output signal

DC output signal

IB

The slope of the ic - vBE curve at the bias point Q is the transconductance gm: the amount of ac current produced by an ac voltage.

Слайд 29

Transconductance = slope at Q point
gm = dic/dvBE|ic = ICQ
where IC =

Transconductance = slope at Q point gm = dic/dvBE|ic = ICQ where
IS[exp(-VBE/VT)-1]; the equation for a diode.

Transconductance

ac input signal

DC input signal (0.7V)

ac output signal

DC output signal

gm = ISexp(-VBE/VT) (1/VT)
gm ≈ IC/VT (A/V)

Слайд 30

ac input resistance ∝ 1/slope at Q point
rπ = dvBE/dib|ic = ICQ

ac input resistance ∝ 1/slope at Q point rπ = dvBE/dib|ic =
≈ VT /IB
re ≈ VT /IE

ac input resistance of transistor

ac input signal

DC input signal (0.7V)

ac output signal

DC output signal

IB

Слайд 31

Small-signal equivalent circuit models

ac model
Hybrid-π model
They are equivalent
Works in linear region only

Small-signal equivalent circuit models ac model Hybrid-π model They are equivalent Works in linear region only

Слайд 32

Steps to analyze a transistor circuit

1 DC problem
Set ac sources to zero, solve

Steps to analyze a transistor circuit 1 DC problem Set ac sources
for DC quantities, IC and VCE.
2 Determine ac quantities from DC parameters
Find gm, rπ, and re.
3 ac problem
Set DC sources to zero, replace transistor by hybrid-π model, find ac quantites, Rin, Rout, Av, and Ai.

Слайд 33

Example-6

Find vout/vin, (β = 100)

DC problem
Short vi, determine IC and VCE
B-E voltage

Example-6 Find vout/vin, (β = 100) DC problem Short vi, determine IC
loop
3 = IBRB + VBE
IB = (3 - .7)/RB = 0.023mA
C-E voltage loop
VCE = 10 - ICRC
VCE = 10 - (2.3)(3)
VCE = 3.1V
Q point: VCE = 3.1V, IC = 2.3mA

Слайд 34

Example -6

ac problem
Short DC sources, input and output circuits are separate, only

Example -6 ac problem Short DC sources, input and output circuits are
coupled mathematically
gm = IC/VT = 2.3mA/25mV = 92mA/V
rπ = VT/ IB = 25mV/.023mA = 1.1K
vbe= vi [rπ / (100K + rπ)] = 0.011vi
vout = - gm vbeRC
vout = - 92 (0.011vi)3K
vout/vi = -3.04

+
vout
-

e

b

c

+
vbe
-

Слайд 35

Exercise-7

Find gm, rπ, and r0, given: β = 100, VA =

Exercise-7 Find gm, rπ, and r0, given: β = 100, VA =
100V,IC=1 mA

gm = IC/VT = 1 mA/25mV = 40 mA/V
rπ = VT/ IB = 25mV/.01mA = 2.5K
r0 = output resistance of transistor
r0 = 1/slope of transistor output characteristics
r0 = | VA|/IC = 100K

Слайд 36

Summary of transistor analysis

Transistor circuits are analyzed and designed in terms of

Summary of transistor analysis Transistor circuits are analyzed and designed in terms
DC and ac versions of the same circuit.
An ac signal is usually superimposed on the DC circuit.
The location of the operating point (values of IC and VCE) of the transistor affects the ac operation of the circuit.
There are at least two ac parameters determined from DC quantities.

Слайд 37

Steps to analyze a transistor circuit

1 DC Analysis Set ac sources to zero, solve

Steps to analyze a transistor circuit 1 DC Analysis Set ac sources
for DC quantities, IC and VCE.
2 Determine ac quantities from DC parameters
Find gm, rπ, and ro.
3 AC Analysis
Set DC sources to zero, replace transistor by hybrid-π model, find ac quantities, Rin, Rout, Av, and Ai.

ro

Слайд 38

Circuit

IE = 1 mA VC = 10V - IC8K = 10 -

Circuit IE = 1 mA VC = 10V - IC8K = 10
1(8) = 2V
IB ≈ IE/β = 0.01mA gm = IC/VT = 1 mA/25mV = 40 mA/V
VB = 0 - IB10K = -0.1V rπ = VT/ IB = 25mV/.01mA = 2.5K
VE = VB - VBE = -0.1 - 0.7 = -0.8V

+
Vout
-

Слайд 39

ac equivalent circuit

b

e

c

vbe = (Rb||Rpi)/ [(Rb||Rpi) +Rs]vi
vbe = 0.5vi
vout = -(gmvbe)||(Ro||Rc ||RL)
vout

ac equivalent circuit b e c vbe = (Rb||Rpi)/ [(Rb||Rpi) +Rs]vi vbe
= -154vbe
Av = vout/vi = - 77

+
vout
-

Neglecting Ro
vout = -(gmvbe)||(Rc ||RL)
Av = vout/vi = - 80

Слайд 40

Prob.

+
Vout
-

β=100

Prob. + Vout - β=100

Слайд 41

Prob.

+
Vout
-

(a) Find Rin
Rin = Rpi = VT/IB = (25mV)100/.1 = 2.5KΩ
(c)

Prob. + Vout - (a) Find Rin Rin = Rpi = VT/IB
Find Rout
Rout = Rc = 47KΩ

Rin

Rout

(b) Find Av = vout/vin
vout = - βib Rc
vin = ib (R + Rpi)
Av = vout/vin = - βib Rc/ ib (R + Rpi
= - βRc/(R + Rpi)
= - 100(47K)/(100K + 2.5K)
= - 37.6

= βib

b

e

c

ib

Слайд 42

Graphical analysis

Input circuit
B-E voltage loop
VBB = IBRB +VBE
IB = (VBB - VBE)/RB

Graphical analysis Input circuit B-E voltage loop VBB = IBRB +VBE IB = (VBB - VBE)/RB

Слайд 43

Graphical construction of IB and VBE

IB = (VBB - VBE)/RB
If VBE =

Graphical construction of IB and VBE IB = (VBB - VBE)/RB If
0, IB = VBB/RB
If IB = 0, VBE = VBB

VBB/RB

Слайд 44

Load line

Output circuit
C-E voltage loop
VCC = ICRC +VCE
IC = (VCC - VCE)/RC

Load line Output circuit C-E voltage loop VCC = ICRC +VCE IC = (VCC - VCE)/RC

Слайд 45

Graphical construction of IC and VCE

VCC/RC

IC = (VCC - VCE)/RC
If VCE =

Graphical construction of IC and VCE VCC/RC IC = (VCC - VCE)/RC
0, IC = VCC/RC
If IC = 0, VCE = VCC

Слайд 46

Graphical analysis

Input
signal

Output
signal

Graphical analysis Input signal Output signal

Слайд 47

Load-line A results in bias point QA which is too close to

Load-line A results in bias point QA which is too close to
VCC and thus limits the positive swing of vCE.
Load-line B results in an operating point too close to the saturation region, thus limiting the negative swing of vCE.

Bias point location effects

Слайд 48

Basic single-stage BJT amplifier configurations

We will study 3 types of BJT

Basic single-stage BJT amplifier configurations We will study 3 types of BJT
amplifiers
CE - common emitter, used for AV, Ai, and general purpose
CE with RE - common emitter with RE,
same as CE but more stable
CC common collector, used for Ai, low output resistance,
used as an output stage
CB common base (not covered)

Слайд 49

Common emitter amplifier

ac equivalent circuit

Common emitter amplifier ac equivalent circuit

Слайд 50

Common emitter amplifier

Rin

Rout

+
Vout
-

Rin
(Does not include source)
Rin = Rpi

Rout
(Does not include load)
Rout =

Common emitter amplifier Rin Rout + Vout - Rin (Does not include
RC

AV
= Vout/Vin
Vout = - βibRC
Vin = ib(Rs + Rpi)
AV = - βRC/ (Rs + Rpi)

Ai
= iout/iin
iout = - βib
iin = ib
Ai = - β

ib

iout

Слайд 51

Common emitter with RE amplifier

ac equivalent circuit

Common emitter with RE amplifier ac equivalent circuit

Слайд 52

Common emitter with RE amplifier

Rin

Rout

+
Vout
-

Rin
Rin = V/ib
V = ib Rpi + (ib

Common emitter with RE amplifier Rin Rout + Vout - Rin Rin
+ βib)RE
Rin = Rpi + (1 + β)RE
(usually large)

Rout
Rout = RC

AV
= Vout/Vin
Vout = - βibRC
Vin = ib Rs + ib Rpi + (ib + βib)RE
AV = - βRC/ (Rs + Rpi + (1 + β)RE)
(less than CE, but less sensitive to β variations)

Ai
= iout/iin
iout = - βib
iin = ib
Ai = - β

ib

iout

ib + βib

+
V
-

Слайд 53

Common collector (emitter follower) amplifier

b

c

e

+
vout
-

(vout at emitter)

ac equivalent circuit

Common collector (emitter follower) amplifier b c e + vout - (vout

Слайд 54

Common collector amplifier

Rin

+
vout
-

Rin
Rin = V/ib
V = ib Rpi + (ib + βib)RL
Rin

Common collector amplifier Rin + vout - Rin Rin = V/ib V
= Rpi + (1 + β)RL

AV
= vout/vs
vout = (ib + βib)RL
vs = ib Rs + ib Rpi + (ib + βib)RL
AV = (1+ β)RL/ (Rs + Rpi + (1 + β)RL)
(always < 1)

ib

ib + βib

+
V
-

Слайд 55

Common collector amplifier

Rout

+
vout
-

Rout
(don’t include RL, set Vs = 0)
Rout = vout

Common collector amplifier Rout + vout - Rout (don’t include RL, set
/- (ib + βib)
vout = -ib Rpi + -ibRs
Rout = (Rpi + Rs) / (1+ β)
(usually low)

Ai
= iout/iin
iout = ib + βib
iin = ib
Ai = β + 1

ib

ib + βib

Слайд 56

Prob

ac
circuit

CE with RE
amp, because RE
is in ac circuit

Given

Rpi =VT/IB
= 25mV(50)/.2mA
= 6.25K

Prob ac circuit CE with RE amp, because RE is in ac

Слайд 57

Prob.

(a) Find Rin
Rin = V/ib
V = ib Rpi + (ib +

Prob. (a) Find Rin Rin = V/ib V = ib Rpi +
βib)RE
Rin = Rpi + (1 + β)RE
Rin = 6.25K + (1 + 50)125
Rin ≈ 12.62K

Rin

+
V -

ib

ib + βib

Слайд 58

Prob.

(b) Find AV = vout/vs
vout = - βib(RC||RL)
vs = ib Rs

Prob. (b) Find AV = vout/vs vout = - βib(RC||RL) vs =
+ ib Rpi + (ib + βib)RE
AV = - β (RC||RL) / (Rs + Rpi + (1 + β)RE)
AV = - 50 (10K||10K) /(10K + 6.25Ki + (1 + 50)125)
AV ≈ - 11

ib

ib + βib

+
vout
-

−βib

Слайд 59

Prob.

(c) If vbe is limited to 5mV, what is the largest

Prob. (c) If vbe is limited to 5mV, what is the largest
signal at input and output?
vbe = ib Rpi = 5mV
ib = vbe /Rpi = 5mV/6.25K = 0.8μA (ac value)
vs = ib Rs + ib Rpi + (ib + βib)RE
vs = (0.8μA)10K + (0.8μA) 6.25K + (0.8μA + (50)0.8μA )125
vs ≈ 18mV

ib

ib + βib

+
vout
-

+
vbe
-

Слайд 60

Prob.

(c) If vbe is limited to 5mV, what is the largest

Prob. (c) If vbe is limited to 5mV, what is the largest
signal at input and output?
vout = vs AV
vout = 17.4mV(-11)
vout ≈ -191mV (ac value)

ib

ib + βib

+
vout
-

+
vbe
-

Слайд 61

Prob.

Using this circuit, design an amp
with:
IE = 2mA
AV = -8
current in voltage

Prob. Using this circuit, design an amp with: IE = 2mA AV
divider I = 0.2mA
(CE amp because RE is not in ac circuit)

β = 100

Voltage divider
Vcc/I = 9/0.2mA = 45K
45K = R1 + R2

Choose VB ≈ 1/3 Vcc to put operating point near the
center of the transistor characteristics
R2/(R1 + R2) = 3V
Combining gives, R1 = 30K, R2 = 15K

Слайд 62

Prob.

β = 100

Find RE (input circuit)
Use Thevenin equivalent
B-E loop
VBB=IBRBB+VBE+IERE
using IB ≈ IE/β
RE

Prob. β = 100 Find RE (input circuit) Use Thevenin equivalent B-E
= [VBB - VBE - (IE/β)RBB]/IE
RE = [3 - .7 - (2mA/100)10K]/2mA
RE = 1.05KΩ

+
VBE -

IE

IB

Слайд 63

Prob.

Find Rc (ac circuit)
Rpi = VT/IB = 25mV(100)/2mA = 1.25K
Ro = VA/IC

Prob. Find Rc (ac circuit) Rpi = VT/IB = 25mV(100)/2mA = 1.25K
= 100/2mA = 50K
Av = vout/vin
vout = -gmvbe (Ro||Rc||RL)
vbe = 10K||1.2K / [10K+ 10K||1.2K]vi
Av = -gm(Ro||Rc||RL)(10K||1.2K) / [10K||1.2K +Rs]
Set Av = -8, and solve for Rc, Rc ≈ 2K

+
vout
-

Слайд 64

CE amplifier

CE amplifier

Слайд 65

CE amplifier

Av ≈ -12.2

CE amplifier Av ≈ -12.2

Слайд 66

FOURIER COMPONENTS OF TRANSIENT RESPONSE V($N_0009)
DC COMPONENT = -1.226074E-01
HARMONIC FREQUENCY FOURIER

FOURIER COMPONENTS OF TRANSIENT RESPONSE V($N_0009) DC COMPONENT = -1.226074E-01 HARMONIC FREQUENCY
NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 1.581E+00 1.000E+00 -1.795E+02 0.000E+00
2 2.000E+03 1.992E-01 1.260E-01 9.111E+01 2.706E+02
3 3.000E+03 2.171E-02 1.374E-02 -1.778E+02 1.668E+00
4 4.000E+03 3.376E-03 2.136E-03 -1.441E+02 3.533E+01
TOTAL HARMONIC DISTORTION = 1.267478E+01 PERCENT

CE amplifier

Слайд 67

CE amplifier with RE

CE amplifier with RE

Слайд 68

CE amplifier with RE

Av ≈ - 7.5

CE amplifier with RE Av ≈ - 7.5

Слайд 69

FOURIER COMPONENTS OF TRANSIENT RESPONSE V($N_0009)
DC COMPONENT = -1.353568E-02
HARMONIC FREQUENCY FOURIER

FOURIER COMPONENTS OF TRANSIENT RESPONSE V($N_0009) DC COMPONENT = -1.353568E-02 HARMONIC FREQUENCY
NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 7.879E-01 1.000E+00 -1.794E+02 0.000E+00
2 2.000E+03 1.604E-02 2.036E-02 9.400E+01 2.734E+02
3 3.000E+03 5.210E-03 6.612E-03 -1.389E+02 4.056E+01
4 4.000E+03 3.824E-03 4.854E-03 -1.171E+02 6.231E+01
TOTAL HARMONIC DISTORTION = 2.194882E+00 PERCENT

Слайд 70

Summary

Av THD
CE -12.2 12.7%
CE w/RE (RE = 100) -7.5 2.19%

Summary Av THD CE -12.2 12.7% CE w/RE (RE = 100) -7.5 2.19%

Слайд 71

Prob.

+
vout
-

2 stage amplifier (a) Find IC and VC of each transistor
Both stages are

Prob. + vout - 2 stage amplifier (a) Find IC and VC
the same (same for each stage)
Capacitively coupled

β = 100

RL=2K

Rc=6.8K

Слайд 72

Prob.

(a) Find IC and VC of each transistor
(same for each stage)
B-E

Prob. (a) Find IC and VC of each transistor (same for each
voltage loop
VBB = IBRBB + VBE + IERE
where RBB = R1||R2 = 32K
VBB = VCCR2/(R1+R2) = 4.8V, and
IB ≈ IE/β
IE = [VBB - VBE ]/[RBB/β + RE]
IE = 0.97mA

VC = VCC - ICRC
VC = 15 - .97(6.8)
VC = 8.39V

+
VC
-

Слайд 73

Prob.

b

c

e

+
vout
-

(b) find ac circuit

b

c

e

RBB = R1||R2 = 100K||47K = 32KΩ
Rpi

Prob. b c e + vout - (b) find ac circuit b
= VT/IB = 25mV(100)/.97mA ≈ 2.6KΩ
gm = IC/VT = .97mA/25mV ≈ 39mA/V

RL=2K

Слайд 74

Prob.

b

c

e

+
vout
-

(c) find Rin1
Rin1 = RBB||Rpi
= 32K||2.6K
= 2.4KΩ

b

c

e

Rin1

(d) find Rin2
Rin2

Prob. b c e + vout - (c) find Rin1 Rin1 =
= RBB||Rpi
= 2.4KΩ

Rin2

find vb1/vi
= Rin1/ [Rin1 + RS]
= 2.4K/[2.4K + 5K]
= 0.32

+
vb1
-

find vb2/vb1
vb2 = -gmvbe1[RC||RBB||Rpi]
vb2/vbe1 = -gm[RC||RBB||Rpi]
vb2/vb1 = -(39mA/V)[6.8||32K||2.6K]
= -69.1

+
vb2
-

RL=2K

Слайд 75

Prob.

b

c

e

+
vout
-

(e) find vout/vb2
vout = -gmvbe2[RC||RL]
vout/vbe2 = -gm[RC||RL]
vb2/vb1 = -(39mA/V)[6.8K||2K]
= -60.3

b

c

e

(f)

Prob. b c e + vout - (e) find vout/vb2 vout =
find overall voltage gain
vout/vi = (vb1/vi) (vb2/vb1) (vout/vb2)
vout/vi = (0.32) (-69.1) (-60.3)
vout/vi = 1332

+
vb1
-

+
vb2
-

RL=2K

Слайд 76

Prob.

Find IE1, IE2, VB1, and VB2
IE2 = 2mA
IE1 = I20μA +

Prob. Find IE1, IE2, VB1, and VB2 IE2 = 2mA IE1 =
IB2
IE1 = I20μA + IE2/β2
IE1 = 20μA + 10μA
IE1 = 30μA

IE1

IE2

Q1 has β1 = 20
Q2 has β2 = 200

Q1

Q2

IB2

Слайд 77

Prob.

Find VB1, and VB2
Use Thevenin equivalent
VB1 = VBB1 - IB1(RBB2)
=

Prob. Find VB1, and VB2 Use Thevenin equivalent VB1 = VBB1 -
4.5 - (30μA/20)500K
= 3.8V
VB2 = VB1 - VBE
= 3.8V - 0.7
= 3.1V

Q1 has β1 = 20
Q2 has β2 = 200

IB2

+
vB1
-

+
vB2
-

IB1

Слайд 78

Prob.

(b) find vout/vb2
vout = (ib2 + β2ib2)RL
vb2 = (ib2 + β2ib2)RL

Prob. (b) find vout/vb2 vout = (ib2 + β2ib2)RL vb2 = (ib2
+ ib2Rpi2
vout/vb2 = (1 + β2)RL/[(1 + β2)RL + Rpi2]
= (1 + 200)1K/[(1 + 200)1K + 2.5K]
≈ 0.988

b1

e1

c1

b2

e2

c2

+
vout
-

+
vB2
-

Rpi2 = VT/IB2
= VT β2/IE2
= 25mV(200)/2mA
= 2.5KΩ

Слайд 79

Prob.

(b) find Rin2 = vb2/ib2
vb2 = (ib2 + β2ib2)RL + ib2Rpi2
Rin2

Prob. (b) find Rin2 = vb2/ib2 vb2 = (ib2 + β2ib2)RL +
= vb2/ib2 = (1 + β2)RL + Rp
= (1 + 200)1K + 2.5K
≈ 204K

b1

e1

c1

b2

e2

c2

+
vB2
-

Rin2

Слайд 80

Prob.

(c) find Rin1 = RBB1||(vb1/ib1)
= RBB1|| [ib1Rpi1 + (ib1 + β1ib1)Rin2]/ib1
= RBB1||

Prob. (c) find Rin1 = RBB1||(vb1/ib1) = RBB1|| [ib1Rpi1 + (ib1 +
[Rpi1 + (1+ β1)Rin2],
where Rpi1 = VT β1/IE1 = 25mV(20)/30μA = 16.7K
= 500K||[16.7K + (1+ 20)204K]
≈ 500KΩ

b1

e1

c1

b2

e2

c2

+
vB1
-

Rin1

iB1

Слайд 81

Prob.

(c) find ve1/vb1
ve1 = (ib1 + β1ib1)Rin2
vb1 = (ib1 + β1ib1)Rin2

Prob. (c) find ve1/vb1 ve1 = (ib1 + β1ib1)Rin2 vb1 = (ib1
+ ib1Rpi1
ve1/vb1 = (1 + β1) Rin2 /[(1 + β1) Rin2 + Rpi1]
= (1 + 20)204K/[(1 + 20)204K + 16.7K]
≈ 0.996

b1

e1

c1

b2

e2

c2

+
ve1
-

iB1

+
vB1
-

Слайд 82

Prob.

(d) find vb1/vi
vb1/vi = Rin1/[RS + Rin1]
= 0.82

b1

e1

c1

b2

e2

c2

+
vb1
-

(e) find overall

Prob. (d) find vb1/vi vb1/vi = Rin1/[RS + Rin1] = 0.82 b1
voltage gain
vout/vi = (vb1/vi) (ve1/vb1) (vout/ve1)
vout/vi = (0.82) (0.99) (0.99)
vout/vi = 0.81

Слайд 83

Voltage outputs at each stage

Output of
stage 2

Output of
stage 1

Input

Voltage outputs at each stage Output of stage 2 Output of stage 1 Input

Слайд 84

Current

Input
current

Input to
stage 2 (ib2)

Current Input current Input to stage 2 (ib2)

Слайд 85

Current

output
current

Input to
stage 2 (ib2)

Current output current Input to stage 2 (ib2)

Слайд 86

Current

output
current

Input to
stage 2 (ib2)

Input
current

Current output current Input to stage 2 (ib2) Input current

Слайд 87

Power and current gain

Input current = (Vi)/Rin = 1/500K = 2.0μA
output current=

Power and current gain Input current = (Vi)/Rin = 1/500K = 2.0μA
(Vout)/RL = (0.81V)/1K= 0.81mA
current gain = 0.81mA/ 2.0μA = 405
Input power = (Vi) (Vi)/Rin = 1 x 1/500K = 2.0μW
output power = (Vout) (Vout)/RL = (0.81V) (0.81V)/1K= 656μW
power gain = 656μW/2μW = 329

Слайд 88

BJT Output Characteristics

Plot Ic vs. Vce for multiple values of Vce and

BJT Output Characteristics Plot Ic vs. Vce for multiple values of Vce
Ib
From Analysis menu use DC Sweep
Use Nested sweep in DC Sweep section

Слайд 89

Probe: BJT Output Characteristics

1 Result of probe

2 Add plot (plot menu) ->

Probe: BJT Output Characteristics 1 Result of probe 2 Add plot (plot
Add trace (trace menu) -> IC(Q1)

3 Delete plot (plot menu)

Слайд 90

BJT Output Characteristics: current gain

Ib = 5μA

(Each plot 10μA difference)

β at Vce

BJT Output Characteristics: current gain Ib = 5μA (Each plot 10μA difference)
= 4V, and Ib = 45μA
β = 8mA/45μA = 178

Слайд 91

BJT Output Characteristics: transistor output resistance

Ib = 5μA

(Each plot 10μA difference)

Ro =

BJT Output Characteristics: transistor output resistance Ib = 5μA (Each plot 10μA
1/slope
At Ib = 45μA,
1/slope = (8.0 - 1.6)V/(8.5 - 7.8)mA
Rout = 9.1KΩ

Слайд 92

CE Amplifier: Measurements with Spice

Rin

Rout

CE Amplifier: Measurements with Spice Rin Rout

Слайд 93

Input Resistance Measurement Using SPICE

Replace source, Vs and Rs with Vin, measure

Input Resistance Measurement Using SPICE Replace source, Vs and Rs with Vin,
Rin = Vin/Iin
Do not change DC problem: keep capacitive coupling
if present
Source (Vin) should be a high enough frequency so that
capacitors act as shorts: Rcap = |1/ωC|. For C = 100μF,
ω = 1KHz, Rcap = 1/2π(1K)(100E-6) ≅ 1.6Ω
Vin should have a small value so operating point does not change
Vin ≅ 1mV

Слайд 94

Rin Measurement

Transient analysis

Rin Measurement Transient analysis

Слайд 95

Probe results

I(C2)

Rin = 1mV/204nA
= 4.9KΩ

Probe results I(C2) Rin = 1mV/204nA = 4.9KΩ

Слайд 96

Output Resistance Measurement Using SPICE

Replace load, RL with Vin, measure Rin =

Output Resistance Measurement Using SPICE Replace load, RL with Vin, measure Rin
Vin/Iin
Set Vs = 0
Do not change DC problem: keep capacitive coupling
if present
Source (Vin) should be a high enough frequency so that
capacitors act as shorts: Rcap = |1/ωC|. For C = 100μF,
ω = 1KHz, Rcap = 1/2π(1K)(100E-6) ≅ 1.6Ω
Vin should have a small value so operating point does not change
Vin ≅ 1mV

Слайд 97

Rout Measurement

Transient analysis

Rout Measurement Transient analysis

Слайд 98

Probe results

-I(C1)

Rout = 1mV/111nA
= 9KΩ

-I(C1) is current in Vin flowing out

Probe results -I(C1) Rout = 1mV/111nA = 9KΩ -I(C1) is current in
of + terminal

Слайд 99

DC Power measurements

Power delivered by + 10 sources:
(10)(872μA) + (10)(877μA) =

DC Power measurements Power delivered by + 10 sources: (10)(872μA) + (10)(877μA)
8.72mW + 8.77mW = 17.4mW
Имя файла: BJT-Bipolar-Junction-Transistor.pptx
Количество просмотров: 223
Количество скачиваний: 1