Содержание
- 2. pnp transistor
- 3. Large current Operation of npn transistor
- 4. Modes of operation of a BJT transistor Mode BE junction BC junction cutoff reverse biased reverse
- 5. Summary of npn transistor behavior
- 6. Summary of pnp transistor behavior
- 7. Summary of equations for a BJT IE ≈ IC IC = βIB β is the current
- 8. Graphical representation of transistor characteristics IB IC IE Output circuit Input circuit
- 9. Input characteristics Acts as a diode VBE ≈0.7V IB IB VBE 0.7V
- 10. Output characteristics IC IC VCE IB = 10μA IB = 20μA IB = 30μA IB =
- 11. Biasing a transistor We must operate the transistor in the linear region. A transistor’s operating point
- 12. A small ac signal vbe is superimposed on the DC voltage VBE. It gives rise to
- 13. Analysis of transistor circuits at DC For all circuits: assume transistor operates in linear region write
- 14. Example-2 B-E Voltage loop 5 = IBRB + VBE, solve for IB IB = (5 -
- 15. Exercise-3 VE = 0 - .7 = -0.7V IE IC IB β = 50 IE =
- 16. Prob. Use a voltage divider, RB1 and RB2 to bias VB to avoid two power supplies.
- 17. Prob. Find the operating point Use the Thevenin equivalent circuit for the base Makes the circuit
- 18. Prob. Write B-E loop and C-E loop B-E loop C-E loop B-E loop VBB = IBRBB
- 19. Exercise-4 (a) Find VC, VB, and VE, given: β = 100, VA = 100V IE =
- 20. Example-5 2-stage amplifier, 1st stage has an npn transistor; 2nd stage has an pnp transistor. IC
- 21. Example -5 RBB1 = RB1||RB2 = 33K VBB1 = VCC[RB2/(RB1+RB2)] VBB1 = 15[50K/150K] = 5V Stage
- 22. Example -5 C-E loop neglect IB2 because it is IB2 IE1 IC1 VCC = IC1RC1 +
- 23. Example-5 Stage 2 B-E loop IB2 IE2 VCC = IE2RE2 + VEB +IB2RBB2 + VBB2 15
- 24. Example-5 Stage 2 C-E loop IE2 IC2 VCC = IE2RE2 + VEC2 +IC2RC2 15 = 2.8(2)
- 25. Summary of DC problem Bias transistors so that they operate in the linear region B-E junction
- 26. Summary of npn transistor behavior npn collector emitter base IB IE IC small current large current
- 27. Transistor as an amplifier Transistor circuits are analyzed and designed in terms of DC and ac
- 28. A small ac signal vbe is superimposed on the DC voltage VBE. It gives rise to
- 29. Transconductance = slope at Q point gm = dic/dvBE|ic = ICQ where IC = IS[exp(-VBE/VT)-1]; the
- 30. ac input resistance ∝ 1/slope at Q point rπ = dvBE/dib|ic = ICQ rπ ≈ VT
- 31. Small-signal equivalent circuit models ac model Hybrid-π model They are equivalent Works in linear region only
- 32. Steps to analyze a transistor circuit 1 DC problem Set ac sources to zero, solve for
- 33. Example-6 Find vout/vin, (β = 100) DC problem Short vi, determine IC and VCE B-E voltage
- 34. Example -6 ac problem Short DC sources, input and output circuits are separate, only coupled mathematically
- 35. Exercise-7 Find gm, rπ, and r0, given: β = 100, VA = 100V,IC=1 mA gm =
- 36. Summary of transistor analysis Transistor circuits are analyzed and designed in terms of DC and ac
- 37. Steps to analyze a transistor circuit 1 DC Analysis Set ac sources to zero, solve for
- 38. Circuit IE = 1 mA VC = 10V - IC8K = 10 - 1(8) = 2V
- 39. ac equivalent circuit b e c vbe = (Rb||Rpi)/ [(Rb||Rpi) +Rs]vi vbe = 0.5vi vout =
- 40. Prob. + Vout - β=100
- 41. Prob. + Vout - (a) Find Rin Rin = Rpi = VT/IB = (25mV)100/.1 = 2.5KΩ
- 42. Graphical analysis Input circuit B-E voltage loop VBB = IBRB +VBE IB = (VBB - VBE)/RB
- 43. Graphical construction of IB and VBE IB = (VBB - VBE)/RB If VBE = 0, IB
- 44. Load line Output circuit C-E voltage loop VCC = ICRC +VCE IC = (VCC - VCE)/RC
- 45. Graphical construction of IC and VCE VCC/RC IC = (VCC - VCE)/RC If VCE = 0,
- 46. Graphical analysis Input signal Output signal
- 47. Load-line A results in bias point QA which is too close to VCC and thus limits
- 48. Basic single-stage BJT amplifier configurations We will study 3 types of BJT amplifiers CE - common
- 49. Common emitter amplifier ac equivalent circuit
- 50. Common emitter amplifier Rin Rout + Vout - Rin (Does not include source) Rin = Rpi
- 51. Common emitter with RE amplifier ac equivalent circuit
- 52. Common emitter with RE amplifier Rin Rout + Vout - Rin Rin = V/ib V =
- 53. Common collector (emitter follower) amplifier b c e + vout - (vout at emitter) ac equivalent
- 54. Common collector amplifier Rin + vout - Rin Rin = V/ib V = ib Rpi +
- 55. Common collector amplifier Rout + vout - Rout (don’t include RL, set Vs = 0) Rout
- 56. Prob ac circuit CE with RE amp, because RE is in ac circuit Given Rpi =VT/IB
- 57. Prob. (a) Find Rin Rin = V/ib V = ib Rpi + (ib + βib)RE Rin
- 58. Prob. (b) Find AV = vout/vs vout = - βib(RC||RL) vs = ib Rs + ib
- 59. Prob. (c) If vbe is limited to 5mV, what is the largest signal at input and
- 60. Prob. (c) If vbe is limited to 5mV, what is the largest signal at input and
- 61. Prob. Using this circuit, design an amp with: IE = 2mA AV = -8 current in
- 62. Prob. β = 100 Find RE (input circuit) Use Thevenin equivalent B-E loop VBB=IBRBB+VBE+IERE using IB
- 63. Prob. Find Rc (ac circuit) Rpi = VT/IB = 25mV(100)/2mA = 1.25K Ro = VA/IC =
- 64. CE amplifier
- 65. CE amplifier Av ≈ -12.2
- 66. FOURIER COMPONENTS OF TRANSIENT RESPONSE V($N_0009) DC COMPONENT = -1.226074E-01 HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
- 67. CE amplifier with RE
- 68. CE amplifier with RE Av ≈ - 7.5
- 69. FOURIER COMPONENTS OF TRANSIENT RESPONSE V($N_0009) DC COMPONENT = -1.353568E-02 HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
- 70. Summary Av THD CE -12.2 12.7% CE w/RE (RE = 100) -7.5 2.19%
- 71. Prob. + vout - 2 stage amplifier (a) Find IC and VC of each transistor Both
- 72. Prob. (a) Find IC and VC of each transistor (same for each stage) B-E voltage loop
- 73. Prob. b c e + vout - (b) find ac circuit b c e RBB =
- 74. Prob. b c e + vout - (c) find Rin1 Rin1 = RBB||Rpi = 32K||2.6K =
- 75. Prob. b c e + vout - (e) find vout/vb2 vout = -gmvbe2[RC||RL] vout/vbe2 = -gm[RC||RL]
- 76. Prob. Find IE1, IE2, VB1, and VB2 IE2 = 2mA IE1 = I20μA + IB2 IE1
- 77. Prob. Find VB1, and VB2 Use Thevenin equivalent VB1 = VBB1 - IB1(RBB2) = 4.5 -
- 78. Prob. (b) find vout/vb2 vout = (ib2 + β2ib2)RL vb2 = (ib2 + β2ib2)RL + ib2Rpi2
- 79. Prob. (b) find Rin2 = vb2/ib2 vb2 = (ib2 + β2ib2)RL + ib2Rpi2 Rin2 = vb2/ib2
- 80. Prob. (c) find Rin1 = RBB1||(vb1/ib1) = RBB1|| [ib1Rpi1 + (ib1 + β1ib1)Rin2]/ib1 = RBB1|| [Rpi1
- 81. Prob. (c) find ve1/vb1 ve1 = (ib1 + β1ib1)Rin2 vb1 = (ib1 + β1ib1)Rin2 + ib1Rpi1
- 82. Prob. (d) find vb1/vi vb1/vi = Rin1/[RS + Rin1] = 0.82 b1 e1 c1 b2 e2
- 83. Voltage outputs at each stage Output of stage 2 Output of stage 1 Input
- 84. Current Input current Input to stage 2 (ib2)
- 85. Current output current Input to stage 2 (ib2)
- 86. Current output current Input to stage 2 (ib2) Input current
- 87. Power and current gain Input current = (Vi)/Rin = 1/500K = 2.0μA output current= (Vout)/RL =
- 88. BJT Output Characteristics Plot Ic vs. Vce for multiple values of Vce and Ib From Analysis
- 89. Probe: BJT Output Characteristics 1 Result of probe 2 Add plot (plot menu) -> Add trace
- 90. BJT Output Characteristics: current gain Ib = 5μA (Each plot 10μA difference) β at Vce =
- 91. BJT Output Characteristics: transistor output resistance Ib = 5μA (Each plot 10μA difference) Ro = 1/slope
- 92. CE Amplifier: Measurements with Spice Rin Rout
- 93. Input Resistance Measurement Using SPICE Replace source, Vs and Rs with Vin, measure Rin = Vin/Iin
- 94. Rin Measurement Transient analysis
- 95. Probe results I(C2) Rin = 1mV/204nA = 4.9KΩ
- 96. Output Resistance Measurement Using SPICE Replace load, RL with Vin, measure Rin = Vin/Iin Set Vs
- 97. Rout Measurement Transient analysis
- 98. Probe results -I(C1) Rout = 1mV/111nA = 9KΩ -I(C1) is current in Vin flowing out of
- 99. DC Power measurements Power delivered by + 10 sources: (10)(872μA) + (10)(877μA) = 8.72mW + 8.77mW
- 101. Скачать презентацию