Лекция 6. Химические основы инновационных технологий

Содержание

Слайд 2

Электролиз
- совокупность процессов, происходящих при прохождении постоянного электрического тока через электрохимическую систему,

Электролиз - совокупность процессов, происходящих при прохождении постоянного электрического тока через электрохимическую
состоящую из двух электродов и расплава или раствора электролита.

Слайд 3

Электролиз расплава бромида свинца

Электролиз расплава бромида свинца

Слайд 4

Процессы на электродах электролизера
Анод (+): окисление 2Br- - 2ē → Br2
Катод

Процессы на электродах электролизера Анод (+): окисление 2Br- - 2ē → Br2
(-): восстановление Pb2+ + 2ē → Pb

Слайд 5

Особенности электролиза водных растворов
1. Имеется несколько типов частиц, которые могут окисляться на

Особенности электролиза водных растворов 1. Имеется несколько типов частиц, которые могут окисляться
аноде и восстанавливаться на катоде.
Пример:
Водный раствор хлорида натрия содержит анионы: Cl-, катионы: Na+, а также молекулы воды.
Какие частицы будут окисляться на аноде и восстанавливаться на катоде?

Слайд 6

Последовательность реакции на электродах различных ионов определяется: 1. Химической природой электродов 2. Окислительно-восстановитель-ным

Последовательность реакции на электродах различных ионов определяется: 1. Химической природой электродов 2. Окислительно-восстановитель-ным (электродным) потенциалом реакции
(электродным) потенциалом реакции

Слайд 7


1. Инертные и активные электроды

Инертные электроды: Pt, графит в реакциях на электродах

1. Инертные и активные электроды Инертные электроды: Pt, графит в реакциях на
не участвуют.
Активные электроды: Cu, Fe, Zn, Ni… принимают активное участие в реакциях.
Например, в нашем случае:
Анод (окисление): Сu - 2e = Cu2+
φо= +0,34 В

Слайд 8

2. Окислительно-восстановительный потенциал реакции (на инертном электроде)
А) На катоде сначала восстанавливаются частицы,

2. Окислительно-восстановительный потенциал реакции (на инертном электроде) А) На катоде сначала восстанавливаются
реакции которых соответствует больший окислительно-восстановительный (электродный) потенциал;

Слайд 9

Решение Принципиально возможно восстановление на катоде следующих частиц: 1. Na+ + ē → Na

Решение Принципиально возможно восстановление на катоде следующих частиц: 1. Na+ + ē
φо1= -2,7 В 2. 2H2O + 2ē → H2+2OH- φо2= -0,83 В Самый большой окислительно-восстановительный потенциал имеет 2 реакция. Поэтому на катоде будет восстанавливаться вода (реакция 2).

Слайд 10

Б) На аноде сначала окисляются частицы, реакции которых соответствует меньший окислительно-восстановительный потенциал. Сначала

Б) На аноде сначала окисляются частицы, реакции которых соответствует меньший окислительно-восстановительный потенциал.
восстанавливаются бескислородные анионы, затем вода, затем кислородсодержашие анионы.

Слайд 11

В нашем примере принципиально возможно окисление на аноде следующих частиц:
1. 2H2О -

В нашем примере принципиально возможно окисление на аноде следующих частиц: 1. 2H2О
4ē → 4H+ + О2 φо1= +1,23 В
2. 2Cl- - 2ē → Cl2 φо2= +1,36 В φо1< φо2 Следовательно на аноде должна окисляться вода, однако на большинстве электродов окисляются хлорид-ионы.
Это связано с явлением, которое называется перенапряжение.

Слайд 12

Перенапряжение
- добавочная по отношению к расчетной ЭДС, которую нужно приложить к

Перенапряжение - добавочная по отношению к расчетной ЭДС, которую нужно приложить к
электродам, чтобы осуществить окислительно-восстановительный процесс.

Слайд 13


Законы Фарадея (1827)
1. Масса выделившегося на электроде вещества пропорциональна количеству электричества, прошедшего

Законы Фарадея (1827) 1. Масса выделившегося на электроде вещества пропорциональна количеству электричества,
через электролит.
2. Одинаковые количества электричества выделяют на электродах массы веществ, пропорциональные молярным массам их химических эквивалентов.

Слайд 14


Постоянная Фарадея
F = 96500 Кл/моль экв.
n экв(B) = Q/F= It/F
Q- количество

Постоянная Фарадея F = 96500 Кл/моль экв. n экв(B) = Q/F= It/F
электричества, Кл
I - ток, А
t - время, с
m(B) = Mэкв n экв(B) = MэквIt/F

Слайд 15


Пример
Через расплавленный бромид свинца пропускали ток силой 2А в течение 30

Пример Через расплавленный бромид свинца пропускали ток силой 2А в течение 30
минут.
Какая масса свинца выделилась?

Слайд 16

Решение
Катод (-): восстановление Pb2+ + 2ē → Pb
Из уравнения: n(Pb)/n(ē) =

Решение Катод (-): восстановление Pb2+ + 2ē → Pb Из уравнения: n(Pb)/n(ē)
½
n(ē) = Q/F = It/F =
=2A·1800c/96500Kл/моль ē = 0,037 моль
n(Pb) = ½ ·0,037 моль= 0,0185 моль
m(Pb) = 0,0185 моль·207 г/моль = 3,83 г
Ответ: выделилось 3,83 г свинца

Слайд 17


Задача
Сколько времени нужно пропускать ток 10 А через раствор поваренной соли, чтобы

Задача Сколько времени нужно пропускать ток 10 А через раствор поваренной соли,
получить 44,8 л хлора (н.у.)?

Слайд 18

Решение
Анод (-): окисление 2Сl- - 2ē → Cl2
n(Cl2) = 44,8 л

Решение Анод (-): окисление 2Сl- - 2ē → Cl2 n(Cl2) = 44,8
/22,4 л/моль = 2 моль
Из уравнения:
n(Cl2)/n(ē) = ½n(ē) n(ē) = 2 n(Cl2) = 4 моль
n(ē) = Q/F = It/F =
=10A·t c/96500Kл/моль ē = 4 моль
t c = 38600 c
Ответ: Ток следует пропускать 38600 c

Слайд 19

Темы коротких сообщений
Современные ингибиторы коррозии: история создания, химический состав, области применения.

Темы коротких сообщений Современные ингибиторы коррозии: история создания, химический состав, области применения.
Протекторная защита и электрозащита металлов от коррозии: принцип действия, области применения.
Гальванопластика: история, принцип действия, области применения.
Использование электролиза для создания газовых смесей для дыхания под водой: электроланг А.Н. Лодыгина, системы жизнеобеспечения современных подводных лодок.
Имя файла: Лекция-6.-Химические-основы-инновационных-технологий.pptx
Количество просмотров: 103
Количество скачиваний: 0