Содержание
- 2. пирамида Составила учитель математики МОУ «Гимназия им. Горького А.М.»: Фабер Г.Н.
- 3. Информационно-коммуникативную компетентность учащихся: учить, искать и находить нужные сведения в огромных информационных массивах, в том числе
- 4. содержание определение пирамиды виды пирамид правильные пирамиды построение правильной пирамиды свойства правильной пирамиды площадь поверхностиплощадь поверхности
- 5. Определение пирамида это n-треугольников элементы пирамиды S B C D E А вершина Многогранник n-угольник в
- 6. Высота проецируется В вершину основания На сторону основания Во внутреннюю область основания Во внешнюю область основания
- 7. Высота проецируется в центр описанной окружности Свойства s A B C 1 2 3 6 4
- 8. Высота проецируется в центр вписанной окружности свойства S M N K 1 2 3 4 5
- 9. Правильная пирамида в основании правильный многоугольник высота проецируется в центр основания построение свойства АПОФЕМА- высота правильной
- 10. Построение правильной пирамиды высота пирамиды основание центр основания
- 11. Свойства правильной пирамиды SA=SB=SC Боковые ребра образуют равные углы с плоскостью основания Боковые ребра образуют равные
- 12. Площадь поверхности пирамиды Sпол.=Sбок.+Sосн.
- 13. Пирамиды вокруг нас (Дом. задан. уч-ся)
- 14. Пирамиды вокруг нас «В немой дали застыли пирамиды фараонов, саркофаги древней были. Величавые как вечность, молчаливые
- 15. Рабочие группы Математики Историки Исследователи мировой системы пирамид Исследователи свойств пирамид Архитекторы
- 16. Математическая точка зрения Евклид пирамиду определяет как телесную фигуру, ограниченную плоскостями, которые от одной плоскости сходятся
- 17. Математическая точка зрения Адриен Мари Лежандр в своём труде «Элементы геометрии» в 1794 г. даёт определение:
- 18. ЕГИПЕТСКИЕ ПИРАМИДЫ Исследование мировой системы пирамид Исследование мировой системы пирамид
- 19. Учебник элементарной геометрии А. Киселева, 1907 г.
- 20. Историческая точка зрения ПИРАМИДА, монументальное сооружение, имеющее геометрическую форму пирамиды (иногда ступенчатую или башнеобразную). Пирамидами называют
- 21. Историческая точка зрения Мексиканская пирамида Солнца Ступенчатая пирамида в Египте
- 22. АЛЕКСАНДРОВСКИЙ МАЯК Исследование мировой системы пирамид
- 23. Исследование мировой системы пирамид Гора Кайлас на Тибете
- 24. Исследование мировой системы пирамид
- 25. Золотое сечение ЗОЛОТОЕ СЕЧЕНИЕ, деление отрезка АС на две части таким образом, что большая его часть
- 26. Исследование свойств пирамид При постройке египетских пирамид было установлено, что квадрат, построенный на высоте пирамиды, в
- 27. Исследование свойств пирамид Мы знаем, что отношение между длиной окружности и её диаметром есть постоянная величина,
- 28. Пирамиды в архитектуре Торговый центр в Илинге, Лондон
- 29. Задание группе «Математиков» Изучить пирамиду как геометрическое тело. Найти определения пирамиды, которые были сформулированы древними учёными.
- 30. Задание группе «Историков» Найти материалы о первых пирамидах. Изучить древние пирамиды с математической точки зрения. Сформулировать
- 31. Задание группе «Исследователей мировой системы пирамид» Установить наличие мест расположения пирамид на Земле. Установить связи между
- 33. Скачать презентацию