Применение математического аппарата для решения задач в физике

Содержание

Слайд 2

Математика с её строгими рассуждениями и доказательствами предлагает физике ясную форму, которая

Математика с её строгими рассуждениями и доказательствами предлагает физике ясную форму, которая
помогает нашим размышлениям.
При сборе информации, формулировке законов и создании основ науки учёным для выражения мыслей нужен ясный язык. Язык математики выражает смысл удивительно кратко и откровенно.

Слайд 3

Одно и то же уравнение для функции у(x) описывает одновременно множество физических

Одно и то же уравнение для функции у(x) описывает одновременно множество физических
объектов; y(x) может означать перемещение частицы как функцию времени; смещение точки балки при нагрузке как функцию положения этой точки.

Слайд 4

Наука о природе зародилась в древнегреческой философии две с половиной тысячи

Наука о природе зародилась в древнегреческой философии две с половиной тысячи лет
лет назад.
Архимед ввёл понятие центра тяжести, вывел законы рычага (заметьте) математически, сформулировал правила сложения параллельных сил.
Галилей рассмотрел движение с математической точки зрения, пришёл к выводу о зависимости между расстоянием, скоростью и ускорением. Учёный всячески пропагандировал применение математических методов при изучении явлений природы.
Ньютон математически вывел закон всемирного тяготения.
Французский учёный Рене Декарт первым ввёл понятие переменной величины и функции.

Слайд 5

Языком величин формулируются физические законы и теории. Связи величин, их взаимозависимость выражаются

Языком величин формулируются физические законы и теории. Связи величин, их взаимозависимость выражаются
с помощью формул. Величины тесно связаны с понятием измерения. Результат измерения выражается числовым значением величины.

Слайд 6

Абсолютная погрешность приближённого значения величины – это модуль разности точного и приближённого

Абсолютная погрешность приближённого значения величины – это модуль разности точного и приближённого
значений величины, зависит от условий измерения и от особенностей прибора. Если в результате опыта, измеряя величину g, учащийся находит значение 9,83 Н/кг, когда общепринятое значение 9,80 Н/кг, то абсолютная погрешность измерения составит
|9,80-9,83|=|-0,03|=0,03.

Слайд 7

Относительная погрешность приближённого значения величины – это отношение абсолютной погрешности к модулю

Относительная погрешность приближённого значения величины – это отношение абсолютной погрешности к модулю
приближённого значения; характеризует качество измерения величины. Приведу пример: при измерении массы двух тел методом взвешивания получены следующие результаты m =5,0±0,5 г и m =100,0±0,5 г. Каждое измерение выполнено с одинаковой точностью до 0,5 г. Относительная погрешность в первом случае не превосходит 0,5:5,0=0,1, во втором 0,5:100,0=0,005. Таким образом, качество измерения массы первого тела хуже качества измерения массы второго тела в 0,1:0,005=20 раз, т.е. массу второго тела измерили более точно.

Слайд 8

Ещё пример. С какой абсолютной погрешностью следует измерить объём воды в измерительном

Ещё пример. С какой абсолютной погрешностью следует измерить объём воды в измерительном
цилиндре, чтобы относительная погрешность не превышала 2%? Грубое измерение дало 100 см³. С какой ценой деления можно взять мензурку?
Из условия задачи приближённое значение объёма 100 см³, а точное –неизвестно, пусть Х см³. 2%=0,02 (процент – одна сотая часть). По определению относительной погрешности 0,02=|х-100|:100 => по основному свойству пропорции 0,02·100=|х-100| => 2=|х-100| (уравнение с модулем) => х-100=2 или х-100=-2 => х=102 или х=98. Значит, абсолютная погрешность измерения |102-100|=|98-100|=2. Так как точность измерения зависит от прибора, то границу погрешности берут равной цене деления шкалы, т.е. при выполнении эксперимента можно взять мензурку с ценой деления 2 см³.

Слайд 9

Построить график пути равномерного движения, если u = 2 м/с. Определите путь,

Построить график пути равномерного движения, если u = 2 м/с. Определите путь,
пройденный телом за 5 с.
Для построения графика: горизонтальная ось- ось пройденных путей (Оs) в метрах; вертикальная ось - ось времени (Оt) в секундах. Выберем масштаб: по оси пути 2м – 1 единичный отрезок; по оси времени 1с -1 единичный отрезок.
Графиком пути равномерного движения является прямая, проходящая через начало координат. Значит, для её построения достаточно взять одно значение времени и вычислить соответственно путь.

t=2с; s=u·t;
s=2м/с·2с=4м.
Строим график.
По графику находим:
если t=5с,
то s=10м.

Слайд 10

На рисунке изображён график пути равномерного движения. На графике Оs - ось

На рисунке изображён график пути равномерного движения. На графике Оs - ось
пройденных путей; Оt - ось времени. Определите по графику путь, пройденный за 10 часов, и скорость движения.

Определим масштаб на каждой оси.
По оси времени 1 единичному
отрезку соответствует 2часа.
По оси пути 1 единичный отрезок – 10 км.
Тогда по графику: если t=10ч,
то s=60км.
Так как υ=s:t,
то υ=60км:10ч=6км/ч
Ответ: s(10ч)=60км; υ=6км/ч.

Слайд 11

Постройте график пути равномерного движения тела со скоростью 2км/ч. Определите по графику

Постройте график пути равномерного движения тела со скоростью 2км/ч. Определите по графику
путь, пройденный за 5ч, и время, за которое тело пройдёт 8км.

Горизонтальная ось – ось времени, в часах;
масштаб 1единичный отрезок – 1час.
Вертикальная ось – ось пути, в км;
масштаб 1единичный отрезок – 2км. Для построения графика зададим точку:
t=2ч; s=2км/2ч=4км
Находим по графику:
если t=5ч, то s=10км
Если s=8км, то t=4ч.
Ответ: s=10км; t=4ч.

Имя файла: Применение-математического-аппарата-для-решения-задач-в-физике.pptx
Количество просмотров: 347
Количество скачиваний: 3