Проекционные методы.Основные понятия и примеры

Содержание

Слайд 2

План лекции

Ведение
Немного истории
Природа многомерна
Пример - многомерный статистический контроль процессов
Два подхода

План лекции Ведение Немного истории Природа многомерна Пример - многомерный статистический контроль
к анализу данных
2. Идеи, заложенные в проекционном подходе
Данные – какие они бывают
Классы решаемых задач
3. Метод главных компонент, основные понятия и примеры

Слайд 3

Метод наименьших квадратов (простейший случай)

Метод наименьших квадратов (простейший случай)

Слайд 4

Многомерные данные

Многомерные данные

Слайд 5

Контроль производственного процесса

Контроль производственного процесса

Слайд 6

Контроль производственного процесса

Контроль производственного процесса

Слайд 7

Контроль производственного процесса

Контроль производственного процесса

Слайд 8

Контроль производственного процесса

Контроль производственного процесса

Слайд 9

Контроль производственного процесса

Контроль производственного процесса

Слайд 10

Контроль производственного процесса

Точки съема

Моделирование производилось на основе анализа измерений и внутренних связей

Контроль производственного процесса Точки съема Моделирование производилось на основе анализа измерений и
присущих этому набору данных

Не применялись содержательные физико-химические модели

Слайд 11

Моделирование многомерных данных (процессов или явлений)

Моделирование многомерных данных (процессов или явлений)

Слайд 12

Содержательная составляющая задачи.

Никакие многомерные методы не помогут, если данные не содержат

Содержательная составляющая задачи. Никакие многомерные методы не помогут, если данные не содержат
полезной информации об изучаемом свойстве

Слайд 13

Данные

Количественные и качественные
Управляемые и неуправляемые
Прямые измерения и косвенные

Данные Количественные и качественные Управляемые и неуправляемые Прямые измерения и косвенные

Слайд 14

Данные

Данные

Слайд 15

Два класса решаемых задач

Два класса решаемых задач

Слайд 16

Проекционные методы

Проекционные методы

Слайд 17

Проекционные методы

Данные без структуры

Данные со скрытой структурой

Проекционные методы Данные без структуры Данные со скрытой структурой

Слайд 18

Проекционные методы

Проекционные методы

Слайд 19

Метод главных компонент

Метод главных компонент

Слайд 20

Матрица счетов T (scores)

Матрица счетов T (scores)

Слайд 21

Матрица нагрузок P (loadings)

Матрица нагрузок P (loadings)

Слайд 22

Остатки E

матрица E имеет ту же структуру что и X

ei - определяет

Остатки E матрица E имеет ту же структуру что и X ei
расстояние от исходного объекта до подпространства главных компонент

совокупная ошибка для всех объектов

E0 , E1 , …
E0 – ошибка при 0-м ГК, т.е. центрированная матрица X

Слайд 23

Математическое обеспечение

Математическое обеспечение

Слайд 24

Пример. Демографические данные

Количество объектов (n) = 32
Количество переменных (m) = 12

Пример. Демографические данные Количество объектов (n) = 32 Количество переменных (m) = 12

Слайд 25

Предварительная обработка данных

Цель – преобразование исходных данных в форму, наиболее удобную для

Предварительная обработка данных Цель – преобразование исходных данных в форму, наиболее удобную для анализа.
анализа.

Слайд 26

График счетов (ГК1-ГК2)

График счетов (ГК1-ГК2)

Слайд 27

Графики счетов

«карты образцов»

Графики счетов «карты образцов»

Слайд 28

График нагрузок (ГК1-ГК2)

«карта переменных»

График нагрузок (ГК1-ГК2) «карта переменных»

Слайд 29

ГК1-ГК2 счета и нагрузки

ГК1-ГК2 счета и нагрузки

Слайд 30

График ошибок

Способ определения правильного количества ГК

График ошибок Способ определения правильного количества ГК

Слайд 31

Заключение 1

Основные цели МГК
Представление объектов в пространстве, отражающем внутреннюю структуру изучаемых данных

Заключение 1 Основные цели МГК Представление объектов в пространстве, отражающем внутреннюю структуру

Понижение размерности системы, отделение содержательной части от шума

Основные «инструменты»
Графики счетов – «карты образцов»
Графики нагрузок – «карты переменных»
Графики остатков – способ выбора количества ГК

Слайд 32

Заключение 2

Что может быть не так?
Данные не содержат необходимой информации
Использовано недостаточное количество

Заключение 2 Что может быть не так? Данные не содержат необходимой информации
ГК
Использовано излишние количество ГК
Не удалены выбросы
Удалены точки (псевдовыбросы) содержащие важную информацию
Недостаточный анализ графиков счетов/нагрузок
Использована только стандартная (машинная) диагностика, без содержательного анализа.
Использованы неверные методы предварительной обработки данных
Имя файла: Проекционные-методы.Основные-понятия-и-примеры.pptx
Количество просмотров: 94
Количество скачиваний: 0