Содержание
- 2. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 3. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 4. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 5. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 6. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 7. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 8. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 9. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 10. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 11. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 12. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 13. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 14. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 15. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 16. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 17. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 18. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 19. 2.1 Решение полиномов Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k =1…n расположены в
- 21. Скачать презентацию
Слайд 22.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 2 Уравнение x^4+5x^3+9x^2+5x-1=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813113/
Слайд 32.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 3 Уравнение x^4+3x^3+3x^2-2=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813117/
Слайд 42.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 4 Уравнение x^4+x^3-11x^2+8x-6=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813118/
Слайд 52.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 5 Уравнение x^4-10x^3+16x+5=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813120/
Слайд 62.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 6 Уравнение x^4-3x^3-4x^2-x-3=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813122/
Слайд 72.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 7 Уравнение x^4+4x^3+4x^2+4x-1=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813123/
Слайд 82.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 8 Уравнение x^4+6x^3+13x^2+10x+1=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813124/
Слайд 92.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 9 Уравнение x^4+x^3-4x^2+16x-8=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813125/
Слайд 102.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 10 Уравнение x^4-x^3-4x^2-11x-3=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813126/
Слайд 112.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 11 Уравнение x^4+3x^3+8x^2-5=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813129/
Слайд 122.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 12 Уравнение x^4+6x^3+11x^2+2x-28=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813131/
Слайд 132.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 13 Уравнение x^4+5x^3+9x^2-5x-1=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813132/
Слайд 142.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 14 Уравнение x^4+3x^3+3x^2-2=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813133/
Слайд 152.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 15 Уравнение x^4-x^3-7x^2-8x-6=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813134/
Слайд 162.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 16 Уравнение x^4-10x^2-16x+5=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813135/
Слайд 172.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 17 Уравнение x^4+3x^3+4x^2+x-3=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813136/
Слайд 182.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 18 Уравнение x^4-4x^3-4x^2-4x-1=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813137/
Слайд 192.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k
2.1 Решение полиномов
Для полиномов Pn(x)=an^n+an-1x^n-1+…+a1x+a0 модули всех действительных корней xk , k

B=1+max{|an-1|,|an-2|,…,|a0|}/|an|
Следовательно, все действительные положительные корни лежат в интервале [A, B], а все действительные отрицательные корни — в интервале [-B, -A].
Задание 2.1. Корни полинома Найти корни полинома с заданной точностью ε.
Предлагается следующий алгоритм.
1. В диалоговом окне Параметры Excel задать относительную погрешность вычислений корней ε = 0,00001: Файл | Параметры | Формулы | Относительная погрешность.
2. Определить A и B по формуле (2.1), разместив предварительно на листе Excel таблицу коэффициентов выбранного полинома (табл. 2.1).
3. Составить таблицу {x,P(x)}, табулируя полином в найденных интервалах, например с шагом h = (B-A)/10 (см. п. 1.7.2 лабораторной работы 1).
4. Определить две соседние ячейки столбца x , где функция меняет свой знак, и выделить их цветом. Одно из значений, для которого значение функции ближе к нулю, принять за начальное приближение к корню полинома.
5. Уточнить значение корня с помощью сервисной команды Подбор параметра (Данные | Анализ «что если» | Подбор параметра) (рис. 2.1). В поле Установить в ячейке ввести адрес ячейки, где вычисляется значение полинома, соответствующее выбранному начальному приближению. В поле Значение ввести 0 (т. е. искомое значение полинома). В поле Изменяя значение ячейки ввести адрес ячейки, где находится начальное приближение к корню полинома.
Рис. 2.1 — Диалоговое окно Подбор параметра
Примечание. В этой ячейке (D3 на рис. 2.1) должно содержаться числовое значение, а не формула, его вычисляющая. Для того чтобы заменить в ячейке формулу на ее числовое значение, необходимо, находясь в этой ячейке, вызвать контекстно-зависимое меню и выбрать Копировать. Затем, находясь в той же ячейке, снова вызвать контекстно-зависимое меню и выбрать Специальная вставка (рис. 2.2). В появившемся диалоговом окне отметить Вставить значения. После этого ячейка готова к использованию в поле Изменяя значение ячейки диалогового окна Подбор параметра.
Рис. 2.2 — Специальная вставка 44
6. После подбора параметра (нажать ОК) получит значение корня с заданной ранее степенью точности. Процесс повторяется для всех найденных начальных приближений в диапазонах, определяемых формулой (2.1).
Вариант 19 Уравнение x^4+2x^3+3x^2+2x-2=0
Скачать https://author24shop.ru/readyworks/laboratornaya_rabota/informatika/813138/
Welcome to the lesson
Роботы и робототехника
Рисунки Кучеровой Ксении, 13 лет
Основные методики оценки закрытых компаний
Emergency Medical Services
Туполев
Презентация на тему Волшебный квадрат
Строение клетки
Организацияперехода на межведомственное информационное взаимодействие при предоставлении муниципальных услуг на территории Во
Презентация на тему Как написать сочинение
Развитие изобразительного творчества
Сравнительный анализ партийных систем России и Германии, их влияние на формирование и развитие гражданского общества
Пасха
Общество с ограниченной ответственностью Нижегороднефтегазпроект
Derecho inmobiliario (Compra y Venta)
«Сколько людей – столько идей» (Как составить мультимедийную презентацию к проекту)
Звуковые волны и их влияние на живые организмы
АЛЬТЕРНАТИВНОЕ ПРИБОРОСТРОЕНИЕ
Прояви свою индивидуальность. Уникальный дизайн
экологический отряд
Презентация тв и мс мфпа
Ёкаи в Японии
АСЕАН (Ассоциация государств Юго-Восточной Азии) 11 класс
PIPING DIAGRAM
Разработка концепции Общего Центра Обслуживания
Изучение типологических особенностей спортсменов разной специализации
Занятость и безработица
План лекции