Содержание
- 2. При решении заданий С3 обязательным условием является создание дерева решений, а также умение сделать правильный вывод
- 3. Рассмотрим задачу: Два игрока играют в игру. На координатной плоскости в точке с координатами (-3;2) стоит
- 4. Помним о том, что выигрывает игрок, после хода которого расстояние от фишки до начала координат будет
- 8. Вывод: Выиграет второй игрок при любом ходе первого игрока, если первый ход второго игрока будет (2;6)
- 9. Пример 1 Пример 2
- 10. Два игрока играют в «Верёвку». Игроки ходят по очереди. В начале игры верёвка имеет длину 14
- 11. Даны две горки фишек, содержащих соответственно 3 и 1 фишку. За один ход разрешается или удвоить
- 12. Спасибо за внимание!
- 14. Скачать презентацию











Фуллерены
Особенности согласования документов территориального планирования с высшим исполнительным органом субъекта Российской Федерац
Регистратор фемтосекундных временных интервалов на основе фотонного эха в тонких пленках
Компьютер - друг или враг?
Межличностные конфликты, их конструктивное разрешение
Дифференциальная диагностика и лечение поражений ЦНС у больных ВИЧ-инфекцией
Презентация на тему Роль Европейского Севера в развитии русской культуры
Этические принципы речевого общения
Диванная подушка.
Презентация на тему Органы цветковых растений
Системи лінійних алгебраичных рівнянь
Презентация на тему Ранние формы религии
Ведение договорной работы
Молодежный кадровый центр
Мы за здоровый образ жизни!
Организация обучения по подготовке аудиторов в учебных центрах
Символ моей Родины – герб
Паркеты
Структура курса «Методологические основы психологии»
Замечания по зданию АБК-1
Тема . Двери
Захоронение Сандармох
Тема учебного проектаИспользование информационных технологий в школьном курсе предмета «черчение» для различных групп восприя
Культура и творчество – твой выбор
Негосударственное пенсионное обеспечение – один из элементов социальной политики предприятия
Презентация на тему ЭЛЕКТРОДИНАМИКА СИЛОВЫЕ ЛИНИИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ. ЭКВИПОТЕНЦИАЛЬНЫЕ ПОВЕРХНОСТИ
Колокол дремавший
Неоптолемеевская механика