Трапеция

Содержание

Слайд 2

Трапеция- это очень интересная фигура. Она обладает многими интересными свойствами. Это

Трапеция- это очень интересная фигура. Она обладает многими интересными свойствами. Это фигура
фигура не похожа на другие. Про трапецию было даже сочинено интересное стихотворение.
Цель моей работы было дать полную информацию об основных фактах, историй и свойствах трапеции. Я попыталась описать трапецию со всех сторон. Подходила к этому проекту очень серьёзно. Получился мой проект красочный и наглядный. Находила я информацию в различных источников. Передо мной стояла задача скомпоновать информацию так, чтобы читателем было интересно читать. Чтобы при выполнении задач ученики и студенты могли с лёгкостью решать задачи по свойству трапеции.
Мой проект я разрабатывала на языке программировании создания Power Point. Программа написана при помощи стандартного приложения Windows – программы Блокнот, которая имеется в компьютерах любого поколения
Pentium. В программе использована техника работы с гиперссылками, работа фреймов, анимации, различные кнопки. Страницы с произведениями автора украшена иллюстрациями и фотографиями, которые обротаны с помощью специальной программы – работа в графике Photoshop и сканера. Иллюстрации вставлены на свободный фон, при этом фон смой иллюстрации обработан прозрачным. На протяжении программы вы увидите интересные анимации и картинки.
Кроме того, проект включает в себя: тест по изученной фигуры, стих о трапеции, олимпиадные задачи.
На сегодняшний день практически нет поисковых сайтов, которые подробно расскажут нам о трапеции. Я вышла из этого положения. Я долго подбирала книги, искала математические газеты и книги, смотрела в книге ЕНТ 11 кл., обращалась ко многим учителям по математики.
Теперь я могу поместить свою страничку по свойству трапеции на Web – страничку в Internet, с которой смогут познокомяться ученики, студенты и учителя.
Мой проект был предназначен для применения в качестве учебного материала на уроках геометрии. В этой программе вы можете найти любые вопросы об этой замечательной фигуре – трапеции.

Введение

Слайд 3

Стих о трапеции

 ТРАПЕЦИЯ, ТРАПЕЦИЯ
Фигура есть такая,
А я её не знаю.
Ты где живёшь,

Стих о трапеции ТРАПЕЦИЯ, ТРАПЕЦИЯ Фигура есть такая, А я её не
трапеция,
В Америке, в Китае?
Может, за трапецией
Поехать надо в Грецию?
Мама говорит: "Не надо,
Трапеция с тобою рядом.
Развею я твою тоску,
Ты подожди минутку", -
И на гладильную доску
Укладывает юбку,
По ней проводит утюжком,
Чтоб не топорщилась мешком:
- Вот тебе ТРАПЕЦИЯ,
Не стоит ехать в Грецию.

Слайд 4

Теория о трапеции

Параллельные стороны трапеции называются её основаниями, а две другие

Теория о трапеции Параллельные стороны трапеции называются её основаниями, а две другие
стороны называются боковыми сторонами. Трапецией, у которой боковые стороны равны, называется равнобокой, а трапецией , у которой одна из боковых сторон перпендикулярна основанию, называется прямоугольной. Любой отрезок, перпендикулярный её основаниям, называется высотой трапеции. Отрезок, соедняющий середины боковых сторон трапеции, называется её средней линией.

Слайд 5

Средняя линия трапеции

Дано:трапеция ABCD QP- ср. линия
Док-ть: QP//AD, QP= ½

Средняя линия трапеции Дано:трапеция ABCD QP- ср. линия Док-ть: QP//AD, QP= ½
(AD+BC)
Док-во:
Через B и P прямая BE
Рассм. треуг. BCP и треуг. PDE: В них:
а) CP = PD( св- во ср. линии)
б) Угол BCP = углу DPE(вертик.)в) Угол BCP = углу DPE( в.н.л. при BC//AE и сек. CD)
Из этого следует, что треуг. BCP и треуг.PDE (по торне и прл. К ней углам)
Из этого следует, что BP = PE, и- ср. линия треуг. ФИз этого следует, что QP – ср. линия треуг. ABE
Из этого следует, что DE=BC
Из этого следует, чтоQP= ½ AE ,BC=PE
Из этого следует, что QP = ½ (BC + AD)
Ч.т.д.

Слайд 6

Задачи уровня А

1) Могут ли углы трапеции, взятые в последовательном порядке, быть

Задачи уровня А 1) Могут ли углы трапеции, взятые в последовательном порядке,
пропорциональны числам 6,3,4,2
Дано: ABCD - трапеция
Найти: углы пропорц. 6,3,4,2
Решение:
Для решении этой задачи составим уровнение:
6х + 3х +4х + 2х +360
15х = 360
х=24
Такой трапеции Тоесть угол А = 2 х 24 =48
не существует Угол B = 4 х 24 = 96.
Угол C = 3 х 24 = 72
Угол D = 6 х 24 = 144
Ч.т.д.

Слайд 7

Задачи уровня А

2) Докажете, что в равнобокой трапеции диагонали равны.
A B

Задачи уровня А 2) Докажете, что в равнобокой трапеции диагонали равны. A
Дано: ABCD – трапеция; AC и BD диагонали.
Док-ть: AC = BD
C D Док – во:
Рассмотрим треуг. ABD и треуг. BCD : В них:
1)уг. ABD = уг. ( как в.н.л. AB // DC и сек. BD)
2)уг. DBC = уг. ADB (как в.н.л. AB//CD и сек. BD)
3)AD =BC (по усл.) треуг. ABD = треуг. BCD
Из равенства треуг. Следует равенство соответствующих элементов.
AM = MC ( т.к. треуголники равны.)
ч.т.д.

Слайд 8

Задачи уровня А

3)Углы при одном основании трапеции равны 60 и 71. Найдите

Задачи уровня А 3)Углы при одном основании трапеции равны 60 и 71.
остальние углы трапеции.
Дано:ABCD - трапеция
Найти: уг. A и уг. B
Решение:
1)Так как вн. одн. углы равны 180
Угол A = 112, (180 – 68)
2) Угол B тогда = 109, (180 – 71)
Ответ: 112,71

Слайд 9

Задачи уровня А
4) Диагональ BD трапеции ABCD перпендикулярна стороне AB и уг.

Задачи уровня А 4) Диагональ BD трапеции ABCD перпендикулярна стороне AB и
BAD =40. Пологая, что меньшее основание трапеции равно её второй боковой стороне, найдите другие углы трапеции.
A B Дано: ABCD – трап., уг. A = 40,
BA= BC, уг. MBA= 90.
Найти: углы ABCD
C D Решение:
1) Рассм. треуг. BAD: В них:
а) уг. A =40( по усл.)
б) уг. B =90(по усл.)
в) уг. D= 50(180 – 40 - 90)
2) Рассм. треуг BCD: В нём:
а) уг.BDC = 90(как в.н.л. BA//CD BD
б) уг. CBD = 50(как в.н.л. BA//CD при сек. BD)
в) уг. C = 40(180 – 50 -90)
Ответ: 40, 40,140, 140

Слайд 10

Задачи уровня B

A B Дано:
ABCD - равнавбок. трапеция,

Задачи уровня B A B Дано: ABCD - равнавбок. трапеция, BA =
BA = CD,угол BAD =
уг. CDA = 60,BA =
CD= 243 см. BC + AD
C D = 44 cм.
Найти: BC и AD
Решение:
1)Для док-ва из т.B и т. C опустили высоту на AD.
2)Рассм. треуг. ABK уг. BCA = 90: В нём:
Угол ABK = 30. AK= 12 см.( св-во катета леж. Против уг. 20)
3) Аналагично треуг. LCD LD = 12см.
4) Рассм. Чет. KBLC: В нём :
BC=KL = x
5) Т.к. BC + AD = 44см.
х + х + 12 +12 +44 см.
2х = 20 см.
Х= 10 см.
6)AB = 10+ 12 +12 = 34 cм
Ответ: 10 см, 34 см.

Слайд 11

Литература

Ф.Ф. Нагибин, Е.С. Канин “Математическая шкатулка”
Э.Г. Готман, З.А. Скапец “Задача одна- решения

Литература Ф.Ф. Нагибин, Е.С. Канин “Математическая шкатулка” Э.Г. Готман, З.А. Скапец “Задача
разные”
А.Н. Шыныбеков ”Геометрия”
А.П. Ершова, В.В. Голобородько “Устная геометрия”
Имя файла: Трапеция.pptx
Количество просмотров: 558
Количество скачиваний: 2