- Главная
- Математика
- Комбинаторика. Курс лекций Дискретная математика

Содержание
- 3. Пусть имеется множество из n элементов. Перестановкой называется конкретное размещение этих элементов в определенном порядке. На
- 4. Рассмотрим общий случай. Выберем первый элемент нашего множества. Имеется n способов его размещения на n позициях.
- 6. Ясно поэтому, что число размещений должно превосходить число сочетаний во столько раз, сколько можно сделать перестановок
- 7. Любопытно отметить, что биномиальные коэффициенты образуют так называемый треугольник Паскаля, в котором каждое новое число является
- 9. Скачать презентацию
Слайд 3
Пусть имеется множество из n элементов. Перестановкой называется конкретное размещение этих элементов
Пусть имеется множество из n элементов. Перестановкой называется конкретное размещение этих элементов

в определенном порядке.
На рисунке слева изображены все возможные перестановки в множестве, элементами которого являются три разноцветных шарика. В данном случае n = 3, а числе всех перестановок равно 6.
На рисунке слева изображены все возможные перестановки в множестве, элементами которого являются три разноцветных шарика. В данном случае n = 3, а числе всех перестановок равно 6.
Слайд 4Рассмотрим общий случай. Выберем первый элемент нашего множества. Имеется n способов его
Рассмотрим общий случай. Выберем первый элемент нашего множества. Имеется n способов его

размещения на n позициях. Следующий элемент можно разместить n-1 способами, поскольку одно место уже занято. А количество вариантов размещения двух первых элементов, очевидно, равно nх(n–1). Размещение трех первых элементов имеет nх(n-1)х(n-2) вариантов. И так далее, рассуждая подобным образом, мы приходим к выражению nх(n-1)х(n-2)х…х2х1.
В математике принято обозначение
n! = 1 х 2 х … х (n-1) х n (читается как n-факториал)
Итак, число всевозможных перестановок в множестве из n элементов выражается формулой
Pn = n!
Кстати, в нашем примере число шариков равнялось 3. Поэтому P3 = 3! = 1х2х3 = 6.
7.3. Число размещений из n элементов по m
Прежде чем дать общее определение, рассмотрим вполне практическую задачу. Из группы в n человек требуется рассадить за столом в определенном порядке m человек (mПронумеруем m стульев. Тогда на первый стул можно усадить одного из n человек. Пусть первое место уже занято. На второе место остается n–1 претендент. Каждая из n возможностей занять первое место сочетается с n-1 возможностью занять второе место. Таким образом, имеется nх(n-1) вариантов занять первые
В математике принято обозначение
n! = 1 х 2 х … х (n-1) х n (читается как n-факториал)
Итак, число всевозможных перестановок в множестве из n элементов выражается формулой
Pn = n!
Кстати, в нашем примере число шариков равнялось 3. Поэтому P3 = 3! = 1х2х3 = 6.
7.3. Число размещений из n элементов по m
Прежде чем дать общее определение, рассмотрим вполне практическую задачу. Из группы в n человек требуется рассадить за столом в определенном порядке m человек (m
Слайд 6Ясно поэтому, что число размещений должно превосходить число сочетаний во столько раз,
Ясно поэтому, что число размещений должно превосходить число сочетаний во столько раз,

сколько можно сделать перестановок в множестве из m элементов, чтобы превратить его из неупорядоченного множества, сочетания, в то, что мы называем размещением. Иными словами, имеет место равенство
И отсюда окончательная формула для числа всевозможных сочетаний из n элементов по m
И отсюда окончательная формула для числа всевозможных сочетаний из n элементов по m
7.5.. Свойства биномиальных коэффициентов
Выражения , с которыми мы часто встречаемся в комбинаторике, называются биномиальными коэффициентами. И это не случайно, ибо они являются коэффициентами в знаменитом соотношении, именуемом биномом Ньютона:
Слайд 7
Любопытно отметить, что биномиальные коэффициенты образуют так называемый треугольник Паскаля, в котором
Любопытно отметить, что биномиальные коэффициенты образуют так называемый треугольник Паскаля, в котором

каждое новое число является суммой ближайших к нему двух чисел предыдущего ряда.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
- Предыдущая
ОщущениеСледующая -
Verstva v Aziji

Деление и степень числа. Тест
Деление нацело (5 класс)
Новогодняя викторина Я люблю математику. 2 тур Задачи про Новый год
Презентация на тему Логарифмические уравнения
Длиннее, короче, одинаковые по длине. Математическая сказка
Дифференциальные уравнения
Логика высказываний и булевы алгебры (Boolean Algebra and Logic)
Свойства абсолютно регурярного графа
Методика изучения трехмерных геометрических фигур
Презентация по математике "Математика в экономике, экоонмика в математике" -
Обобщение по теме Новая запись числа. 5 класс
Огромные числа
Математико-картографическое моделирование
Повторение курса 5 класса
Как считать десятками
Графики функций у = ах2+n и y= a(x – m)2
Мир отрицательных чисел
Математика и техника. Их связь и значение
Случайные процессы с дискретными состояниями
Системы неравенств с одной переменной
Дифференцируемость функций нескольких переменных
Медианы, биссектрисы и высоты треугольника
Интерактивный тест Степень. Свойства степени
Решение задач с использованием операций реляционной алгебры
Считаем с пчелками. Интерактивный тренажер
Презентация на тему Умножение и деление
Осевая симметрия
Аналитические функции